

OSWatcher : suivre l’évolution des systèmes d’exploitation au cours du temps

Posté par Wenzel (site web personnel) le 02 novembre 2018 à 09:27.
Édité par Benoît Sibaud, palm123, bubar🦥, Davy Defaud et ZeroHeure.
Modéré par bubar🦥.
Licence CC By‑SA.

Étiquettes :

	neo4j

	libvirt

	système_d'exploitation

	fosdem

	ubuntu

[image: Linux]

Bonjour LinuxFr.org. J’aimerais te faire part d’une idée qui me trottait dans la tête depuis quelques années, puis de sa concrétisation il y a quelques mois en un vrai projet.

Les questions qui ont fait germer cette idée sont les suivantes :

	quels sont les binaires UNIX présents sur toutes les distributions modernes ?

	quels sont les fichiers en communs sur tous les Windows de XP à 10 ?

	est‐ce que les systèmes d’exploitation (OS) distribuent les binaires avec les meilleures options de compilations ?

	quelles sont les bibliothèques chargées par défaut sur Ubuntu 16.04 ?

	quelles sont les différences de configuration par défaut entre les grandes distributions ? Pourrions‐nous y trouver des choses intéressantes ?

	etc.

Sommaire

	
Présentation
	Offline

	Online

	Objectifs

	
Outils
	SEE

	Neo4j

	
Ébauche
	Extracteur

	Base de données

	Interface Web

	Futur

Présentation

En somme, l’objectif du projet est de nous donner une vision plus haut niveau sur tout l’historique de nos système d’exploitation. Voyez cela comme une sorte de « DistroWatch sous stéroïdes ». 😃

Le cœur du projet repose sur la capture des caractéristiques d’un système fraîchement installé, afin de les mettre dans une base de données. Une fois ceci fait, nous pourrions créer des diffs entre ces mêmes caractéristiques, et ainsi nous permettre de comparer deux versions d’un même système d’exploitation, et donc de le suivre au cours de ses évolutions.

La collecte de ces caractéristiques se fera en deux modes : hors ligne « offline » et en ligne « online » :

Offline

	arborescence du système de fichiers ;

	propriétés des fichiers :

	drapeau setuid,

	options de compilation des exécutables ;

	nombre de scripts shell, Perl et Python ;

	tableau des appels système ;

	configuration du noyau ;

	tâches planifiées (cronjobs) ;

	configuration des services dans /etc.

Online

	consommation mémoire IDLE ;

	processus lancés par défaut ;

	bibliothèques chargées en mémoire ;

	ports ouverts et services/processus associés ;

	requêtes DNS envoyées ;

	
sockets unix ;

	trafic D-Bus ;

	règles de filtrage iptables ;

	modules/pilotes chargés.

Objectifs

Le projet pourra à terme desservir plusieurs grands objectifs :

	base de données de référence : être capable d’effectuer des requêtes sur n’importe quelle caractéristique sur chaque système d’exploitation et, grâce à la mise à disposition d’une API, quiconque pourra trouver son propre usage et construire ses scripts par‐dessus ;

	
sécurité : en extrayant les options de compilation, il est possible de vérifier que les distributions appliquent les meilleures options sur les binaires ; en outre, il serait possible de scanner tous les scripts shell, Perl et Python avec un « linter » pour faire ressortir des erreurs et mauvaises pratiques de manière automatisée ; cela a déjà été étudié avec le Cyber‐Independant Test Lab, organisation avec laquelle j’ai tenté une collaboration (affaire à suivre) ;

	suivi et évolution : but principal du projet, suivre les changements d’un même système d’exploitation au cours du temps grâce à des diffs entre des mêmes caractéristiques ; de plus, il serait possible de suivre les correctifs de Windows et de fournir aux chercheurs en sécurité un diff binaire via une simple URL. 😃

Outils

SEE

Sandboxed Execution Environment est un cadriciel Python développé par l’un de mes collègues à F-Secure. Conçu à la base pour analyser des binaires inconnus, il permet de définir un protocole (une suite de signaux) qui vont déclencher des hooks (crochets logiciels).

Basé sur le pattern Observer, le fonctionnement est simple et permet notamment :

	la définition d’un protocole pour une analyse ;

	le découplage entre ce protocole et les actions qui vont en découler (Observer pattern) ;

	les actions sont modulaires et chargées dynamiquement sous forme de crochets (hooks).

J’ai réutilisé ce cadriciel dans OSWatcher, en définissant la capture d’un système d’exploitation comme on analyserait un binaire. J’ai défini un protocole à suivre :

def protocol(environement):
 context = environement.context
 config = environement.configuration['configuration']
 context.trigger('protocol_start')
 context.trigger('offline')
 # start domain
 logging.info("Starting the domain")
 context.poweron()
 # wait until desktop is ready
 time.sleep(config['desktop_ready_delay'])
 context.trigger('desktop_ready')
 # shutdown
 context.poweroff()
 context.trigger('protocol_end')

Et j’ai implémenté les actions sous forme de hooks :

hooks.filesystem.py

from see import Hook

class FilesystemHook(Hook):
 def __init__(self, parameters):
 super().__init__(parameters)
 self.context.subscribe('offline', self.capture_fs)

Note : Les hooks peuvent eux‐mêmes déclencher de nouveaux signaux.

→ GitHub

→ Documentation

Neo4j

Côté base de données, j’avais commencé avec un bête MySQL, n’ayant pas entendu parler des bases de données orientées graphe. Les performances de parcours d’un système de fichiers étaient atroces, évidemment.

Aussi j’ai basculé sur Neo4j, pour stocker l’arborescence et tout le reste des caractéristiques, ce qui m’a grandement simplifié la vie.

Ébauche

Voilà où j’en suis concrètement sur le projet :

Extracteur

L’extracteur comporte les hooks suivants :

	
FileSystemHook : basé sur libguestfs pour parcourir le système de fichiers ;

	
MemoryDumpHook : utilise l’API libvirt.coreDumpWithFormat pour générer un vidage mémoire, puis lance une session avec l’outil d’analyse d’image mémoire Rekall :

	
ProcessListHook : extrait les processus avec le greffon pslist de Rekall,

	
SyscallTableHook : extrait les appels système avec le greffon ssdt de Rekall ;

	
OperatingSystemHook : crée le nœud principal dans Neo4j, fait le lien avec les données des autres hooks.

Ci‐dessous un exemple de l’extracteur lancé sur une machine virtuelle Ubuntu 16.04, avec le FilesystemHook configuré :

[image: extracteur_ubuntu_filesystem]

Exemple de configuration des hooks :

{
 "configuration":
 {
 "delete": true,
 "desktop_ready_delay": 90
 },
 "hooks":
 [
 {
 "name": "hooks.system.OperatingSystemHook"
 },
 {
 "name": "hooks.filesystem.FilesystemHook",
 "configuration":
 {
 "delete": true,
 "enumerate": true,
 "log_progress": true,
 "log_progress_delay": 10,
 "inode_checksums": false
 }
 },
 {
 "name": "hooks.memory.MemoryDumpHook"
 },
 {
 "name": "hooks.syscall.SyscallTableHook"
 },
 {
 "name": "hooks.process.ProcessListHook"
 }
]
}

Base de données

Ci‐dessous un exemple de ce à quoi peut ressembler un système de fichiers dans Neo4j (vue de /etc) :

[image: etc_neo4j]

Interface Web

Et, enfin, mes tentatives à faire un frontal Web :

	
VueJS ;

	
vue-apollo : pour discuter avec la BDD en GraphQL ;

	
Buefy : pour un cadriciel CSS ;

	
neo4j-graphql : hook permettant d’exposer une API GraphQL sur Neo4j.

[image: Système de fichiers]

[image: Processus]

[image: Tableau des appels système]

Futur

La suite du projet fera l’objet d’une discussion éclair (lightning talk) au FOSDEM 2019, s’il est accepté !

J’avais pour prochain objectif de produire un diagramme camembert en D3js, donnant des statistiques sur chaque type de fichier présent (ex : perl script: 0,5%). Mais je ne suis définitivement pas un développeur Web, et je vais me contenter de créer un petit script Python qui exploite ma base de données et affiche les statistiques dans le terminal.

Par ailleurs, j’aimerais recevoir vos retours et vos conseils pour mener à bien ce projet. 😃

Aller plus loin

	
OSWatcher sur GitHub
(839 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/99136502ef0c87183cbd54e4c8b69c71cea38b8df6d3a5febcb22a5a.jpg
Syscall Table

nt

Index

10

1)

12

13

14

v 20perpage v @ Paginated

Name
NtAcceptConnectPort

NtAccessCheck

NtAccessCheckAndAuditalarm

NtAccessCheckByType
NtAccessCheckByTypeAndAuditAlarm
NtAccessCheckByTypeResultList
NtAccessCheckByTypeResultListAndAuditalarm
NtAccessCheckByTypeResultListAndAuditAlarmByHandle
NtAddAtom

NiSetBootOptions

NtAdjustGroupsToken

NtAdjustPrivilegesToken

NtAlertResumeThread

NtAlertThread

NtallocateL ocallyUniqueld

Address
0x805a4664
0x805f13ea
0x805fdc20
0x805f141c
0x805fdcSa
0x805f1452
0x805fdcoe
oxg0Sface2
0x80615€80
0x806170e4
0x805ec7es
0x805ecd40
0x805d4c0c
0x805ddbbe

0x806164a6

EPUB/e49106bca38f987e8783a3ba4fa18ea8c633eaed0af3f9bf3beb5477.jpg
(CW wenzel@localhost see X python -m oswatcher.capture osw-ubuntu-16.04 hooks.json -d

INF oot:connect to Neo4j DB

DEBUG:see.environment.Environment:Allocating environment.

DEBUG: see. hooks. HookManager : Loading hooks. filesystem.FilesystemHook hook

DEBUG: see. environment. Environment:Environment successfully allocated.

INFO:hooks. filesystem. FilesystemHook:initializing libguestfs

DEBUG:hooks. filesystem.FilesystemHook:hard disk path: /tmp/osw-instances-17durc9f/05bd8939-2b01-447e-b7df-9419454c3bf8/05bd8939-2b01-447e-b7df-9419454c3bf8
DEBUG:hooks.. filesystem. FilesystemHook: running libguestfs backend

DEBUG:hooks.. filesystem. FilesystemHook:mounting filesystem

INFO:hooks. filesystem. FilesystemHook:Delete all nodes in graph

ooks. filesystem. FilesystemHook:Capturing filesystem

thooks. filesystem. FilesystemHook: [1.2 %] /etc/apparmor.d/abstractions/ubuntu-console-browsers

thooks. filesystem. FilesystemHool .5 %] /etc/ssl/certs/5443e9e3.0

thooks. filesystem.FilesystemHook: [3.6 %] /lib/firmware/amdgpu/vegalo_mec2.bin

thooks. filesystem.FilesystemHook: [4.8 %] /1ib/firmware/mrvl

thooks. filesystem.FilesystemHook: [6.0 %] /lib/firmware/usbdux

thooks. filesysten.FilesystemHook: [7.2 %] /lib/modules/4.4.0-116-generic/kernel/drivers/hid/hid-uclogic.ko
thooks. filesystem.FilesystemHook: [8.4 %] /lib/modules/4.4.6-116-generic/kernel/drivers/isdn/capi/kernelcapi.ko
thooks. filesysten.FilesystemHook:[9.9 %] /lib/modules/4.4.0-116-generic/kernel/drivers/mfd/wl1273-core.ko
thooks. filesystem. FilesystemHoo .3 %] /lib/modules/4.4.0-116-generic/kernel/drivers/nfc

:hooks. filesystem.FilesystemHook: [12.6 %] /lib/modules/4.4.0-116-generic/kernel/drivers/staging/iio/accel/sca3000.ko
thooks. filesystem. FilesystemHoo .6 %] /lib/modules/4.4.0-116-generic/kernel/drivers/video/fbdev/tdfxfb.ko
thooks. filesysten.FilesystenHook: [14.7 %] /lib/modules/4.4.0-116-generic/kernel/net/netfilter/nf_nat_sip.ko
thooks. filesystem. FilesystemHoo %] /lib/modules/4.4.0-116-generic/kernel/sound/usb/caiaq

thooks. filesystem.FilesystemHook: [16.5 %] /1ib/terminfo/s/screen-bce

thooks. filesystem. FilesystemHoo %] /sbin/runuser

thooks. filesystem. FilesystemHook: %1 /usr/lib/grub/i386-pc/bfs.mod

thooks. filesystem. FilesystemHoo %] /usr/lib/python3/dist-packages/apt/progress/base.py

:hooks. filesystem.FilesystemHoo %] /usr/Lib/python3.5/calendar.py

thooks. filesystem. FilesystemHoo %] /usr/lib/python3.5/1ib-dynload/fpectl.cpython-35m-x86_64-linux-gnu.so
thooks. filesystem. FilesystemHoo %] /usr/lib/tmpfiles.d/home.conf

thooks. filesystem. FilesystemHoo %] /usr/lib/x86_64-Linux-gnu/perl-base/unicore/To/NFDQC.pl

:hooks. filesystem. FilesystemHoo %] /usr/sbin/update-grub

MR ROoNGGOGGO NN

w
N}

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/9622f9aeeb829842ee8dc2bd92ba2dfa2e33d95e034ab9ed3cb0dfbf.jpg
Syacan s

Filesystem

—« Compus appicatons

P

EPUB/3cba740418b40002b233014e14ee7def808176d88582adb82d14239f.jpg
Process List

10perpage v @D Paginated

_EPROCESS Name PID Parent PID Threads handles Wowed
0x865¢49c8 System 4 0 54 370 No
0x8614c2d8 algexe 256 540 7 104 No
0x8634c2b0 smss.exe 320 a 3 19 No
0x86159d18 ctfmon.exe 428 1240 i 86 No
0x862ef598 csrss.exe 472 320 10 359 No
0x862€f020 winlogon.exe 496 320 24 548 No
0x8634c848 services.exe 540 496 23 316 No
0x86303020 Isass.exe 552 496 24 363 No
0x862e1da0 svchost.exe 708 540 19 213 No
0x862¢5338 svchost.exe 764 540 1 256 No

EPUB/2badec4a46c9548dc34e6b18fcb3761d45b4ccc9dd7c9d26c309f695.png
$ MATCH(n)-[*]->(m) WHERE n.name = "etc" return n,m & ® F A O X

@ =D

bash

Q apa

group

Notall eturn nodes are being displayed due to Intial Node Display setting. Only 300 of 300 nodes are being displayed

EPUB/imagessections1.png

