

Outils utiles pour développeur

Posté par Eiffel le 03 mars 2017 à 10:02.
Édité par Davy Defaud, Lucas, palm123, kp, Benoît Sibaud, Tonton Th, BAud, Jehan, Nÿco, RyDroid, Nils Ratusznik, Jiehong, ZeroHeure, ɹǝıʌıʃO, Storm et Pierre Jarillon.
Modéré par Pierre Jarillon.
Licence CC By‑SA.

Étiquettes :

	développement

	développeur

	compilateur

	gdb

	llvm

	valgrind

	doxygen

[image: C et C++]

Le but de cette dépêche est de recenser quelques outils utiles pour les développeurs (pas uniquement C et C++) et de donner accès à des ressources intéressantes pour leur prise en main.

Tout d’abord comment définit‐on un « outil utile » ? Ce sont des logiciels (libres, c’est mieux) qu’il n’est pas obligatoire d’utiliser mais qui permettent de gagner en productivité (ou de moins se prendre la tête avec un bogue). Ces outils sont utilisables indépendamment, mais utilisés ensemble peuvent former un tout qui donne les fonctionnalités d’un environnement de développement intégré.

Il est fort probable que pour certains cette dépêche vienne enfoncer des portes ouvertes. Mais pensez aux nouveaux pour qui elle sera, peut‐être, profitable.

Sommaire

	Makefile

	CTags

	Valgrind

	Time

	Doxygen

	Clang/LLVM

	GDB (GNU Debugger)

	CMake

	Cscope

Makefile

Voir aussi CMake plus loin.

Make est sûrement l’outil le plus connu et donc le plus utilisé, mais savez‐vous vraiment tirer parti de toute sa puissance ?

Make est un utilitaire qui permet d’automatiser la compilation. Pour fonctionner, il a besoin d’un fichier Makefile qui contiendra essentiellement des blocs ayant cette apparence :

cible : dépendances
 commandes à exécuter

Il est possible de déclarer des variables, pour faciliter l’écriture et la maintenance de fichiers Makefile. Certaines implémentations de Make proposent aussi des extensions, comme des variables internes qui accélèrent l’écriture de tels fichiers, comme :

	
$@, le nom de la cible ;

	
$<, le nom de la première dépendance ;

	
$^, la liste des dépendances.

Comme cette dépêche n’a pour but que la présentation des outils, voici un bon tutoriel d’introduction à Makefile pour débuter.

CTags

CTags est un outil très utile quand votre projet commence à avoir pas mal de fichiers. En effet, il permet de retrouver la déclaration ou la définition d’une variable ou d’une fonction. Il existe de nombreux greffons pour les éditeurs les plus connus (emacs, vim, kate…).

Valgrind

Valgrind est en fait un ensemble d’outils. Celui qui nous intéresse dans le cadre de cette dépêche est MemCheck. Il permet d’exécuter un programme et d’obtenir une synthèse de l’état de son tas. Ainsi, il est facile de détecter et corriger les fuites mémoire avec un tel outil. Je vous recommande cette introduction à memcheck.

Time

Time est une simple commande Unix qui permet de mesurer la durée d’exécution d’un programme. De prime abord, ça ne paye pas de mine, mais cela peut se révéler assez utile.

Doxygen

Doxygen permet de générer de la documentation dans plusieurs formats (comme HTML ou [image: \LaTeX]) pour plusieurs langages de programmation (C, C++, Java, VHDL…). Pour ce faire, il faudra ajouter des commentaires avec une syntaxe un peu particulière à certains endroits de votre code, par exemple, pour documenter une fonction vous devrez ajouter le commentaire avant son prototype. Voici le lien d’une initiation à Doxygen.

Clang/LLVM

Clang est un compilateur C, C++ et Objective-C qui s’appuie sur LLVM. Il tente d’être compatible avec GCC (il utilise les mêmes options) et avec MSVC. Il utilise une licence libre non copyleft.

Il s’approche peu à peu de GCC au niveau performance du code généré, mais il a surtout une interface utilisateur bien meilleure (même s’il a poussé GCC à de gros efforts à ce niveau) :

	il affiche erreurs et diagnostic en couleurs de façon très claire ;

	il propose des corrections pour certaines erreurs (fautes de frappe) ;

	il est plus rapide pour compiler que GCC.

Autre gros point fort, sa conception est modulaire et il expose une énorme partie de ses fonctionnalités dans des bibliothèques (par exemple, il est très simple de parcourir l’AST), ce qui permet à beaucoup d’outils d’exister autour de lui :

	
clang-format pour l’indentation du code, non pas ligne à ligne, mais globalement. Il peut, par exemple, transformer un appel de fonction avec des paramètres sur des lignes isolées en un appel mono‐ligne si le résultat n’est pas trop long. Debian fournit un paquet ;

	
clang-tidy propose des détections et corrections de bogues courants. C’est une collection de vérifications (checks) et il est assez aisé d’en ajouter de nouvelles. Debian propose un paquet ;

	
clang static analyzer est, comme son nom l’indique, un analyseur statique (comme cppcheck). Il tente de trouver des bogues en lisant le code. Il est assez utile malgré des faux positifs assez présents ;

	
clang et LLVM ont introduit des sanitizers qui permettent d’instrumenter le code pour trouver des bogues à l’exécution (comme Valgrind). Les plus connus sont ASAN et TSAN (address sanitizer et thread sanitizer), mais d’autres se sont greffés au cours du temps. Ils ont été portés sous GCC. Ils sont vraiment très puissants et pratiques pour détecter des bogues lors des tests. En particulier, sous GCC undefined behaviour sanitizer.

GDB (GNU Debugger)

GDB est le débogueur standard du projet GNU. Il est portable sur de nombreux systèmes type Unix et fonctionne pour plusieurs langages de programmation, comme le C, le C++ et le Fortran.

Il est aussi possible d’utiliser rr pour rejouer ce qui a été mémorisé.

CMake

CMake est un moteur de production (build automaton) de plus haut niveau que Make ou SCons. Il est à placer au même niveau qu'Autotools puisqu'il permet de générer des Makefiles.

 Il utilise un DSL (Domain Specific Language ou langage dédié) pour ses fichiers de configuration pour décrire les constructions (builds) et génère des fichiers Makefile ou équivalent pour make, ninja, voire carrément pour des EDI, tels que Visual Studio, XCode et d’autres.

Un exemple vaut mieux qu’un long discours :

cmake_minimum_required (VERSION 2.8.11)
project (HELLO)
add_executable (helloDemo demo.cxx demo_b.cxx)
target_include_directories (Hello includes)

Va compiler un exécutable helloDemo à partir des fichiers demo.cxx et demo_b.cxx, en cherchant les fichiers d’en‐têtes déclarés par les #include dans le répertoire includes.

Quant à l’utilisation :

$ # create build tree
$ cmake /path/to/project
$ # build
$ make

ou avec ninja :

$ # create build tree
$ cmake -GNinja /path/to/project
$ # build
$ ninja

Cscope

Cscope est un navigateur de code source C, créé à l’époque du PDP-11 par les Bell Labs. Il a été libéré en 2000 par SCO sous une licence BSD. Il utilise une interface texte en mode plein écran.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections78.png
%

