

Ouverture du code de CFE, un nouveau frontend C/C++ et sortie de l'infrastructure de compilation LLVM 2.0

Posté par Pierre Palatin (site web personnel) le 12 juillet 2007 à 12:51.

Modéré par Pascal Terjan.

Étiquettes :

	développeur

[image: Technologie]

Apple vient d'ouvrir le code de son nouveau frontend nommé "CFE". Ce frontend permet de parcourir du code C/C++/ObjC++ afin de produire un arbre de syntaxe (AST) qui permet ensuite à un compilateur de travailler dessus. Actuellement, CFE est dans un état préliminaire, n'ayant qu'un support partiel du C, mais semble avancer à grand pas. Ce frontend est avant tout destiné à LLVM (Low Level Virtual Machine).

LLVM, qui vient de sortir récemment en version 2.0, est une infrastructure de compilation libre complète ayant la particularité de mettre en avant son format intermédiaire de manière explicite, contrairement à GCC qui le garde uniquement en interne. Ainsi, il est possible de distribuer un programme sous ce format intermédiaire, qui pourra ensuite être exécuté partout. Cette approche est un peu similaire à l'approche de Microsoft avec le MSIL de .Net, mais vise ici clairement l'objectif d'avoir une performance native.

Cette représentation intermédiaire peut notamment être transformée en C, interprétée, exécutée en JIT ou compilée en natif; les performances obtenues dans ces dernier cas peuvent êtres proches de celles de GCC.

LLVM 2.0 permet désormais compiler des codes réellement complexes tels que Mozilla, Qt ou Koffice. Un backend MSIL expérimental est également fourni.
LLVM, crée à l'UIUC et maintenant notamment développé par Apple fournit une infrastructure modulaire de compilation, avec une gestion souple et fine des passes de transformation, depuis le parsing jusqu'à la génération de code natif, en passant par de l'optimisation au moment de l'édition de lien.

LLVM fournit (entre autres) une bibliothèque pour manipuler et produire du code; il devient ainsi aisé de faire des systèmes de génération de code qui bénéficieront des optimisations du compilateur, telles que de l'inlining ou optimisation au moment de l'édition de lien; ainsi, Apple utilise cette approche pour OpenGL dans Leopard. De même, un projet Google Summer of Code essaye actuellement d'utiliser la génération dynamique de code dans Qemu, à la place du système actuel de génération de code ad-hoc basé sur GCC 3.

A noter qu'un des créateur et développeur principal de LLVM est Chris Lattner, qui n'était autre que le créateur de la Sabre OS Page que certains ici connaissent peut-être.

Actuellement, pour pouvoir analyser le code C/C++, LLVM utilise une version modifiée du frontend de GCC, produisant du code dans la représentation intermédiaire de LLVM. Cependant, le code de GCC n'étant pas très souple, la maintenance est difficile et l'expressivité faible. Ainsi, le passage à GCC 4.2 vient seulement de débuter.

Dans une présentation au meeting développeur LLVM (slides,vidéo), Steve Naroff explique en détail le pourquoi de la création d'un nouveau frontend. En pratique, celui-ci apportera plusieurs avantages :

	Avoir un frontend facilement réutilisable, comme par exemple pour les outils d'indexation de code des IDEs, en évitant toute incohérence entre l'interface et le compilateur ;

	Aisément concevoir des outils d'analyse et transformation de code, chose difficile à faire actuellement, particulièrement en C++ ;

	Pour les chercheurs, il sera possible de facilement modifier la syntaxe C++ afin d'expérimenter diverses idées, chose également difficile actuellement avec GCC ;

	Enfin, CFE permettra d'avoir des messages d'erreur beaucoup plus précis que GCC, et, à priori une meilleure performance sur des gros fichiers.

LLVM est un projet intéressant, ayant une approche modulaire extrêmement utile pour les outils de manipulation de code qui prolifèrent. De plus, contrairement à beaucoup de compilateurs de niche ou venant de la recherche, LLVM 2.0 est réellement utilisable dans des cas complexes réels. Comme LLVM a fait le choix du C++, le nouveau frontend ne sera probablement jamais directement intégré dans GCC; cependant, il reste très intéressant par sa souplesse et modularité et deviendra probablement un incontournable pour tout les outils de manipulation de code et autres approches expérimentales.
Aller plus loin

	
Annonce de CFE
(59 clics)

	
LLVM Compiler Infrastructure
(56 clics)

	
Notes à propos de LLVM 2.0
(53 clics)

	
Performances de LLVM 2.0 et gcc 4.2
(51 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

