

Petit état de l'art des systèmes d'initialisation (1)

Posté par Joris Dedieu (site web personnel) le 03 décembre 2013 à 19:33.
Édité par Jarvis, Jiehong, needs, ZeroHeure, Nils Ratusznik, Fopossum, Brndan, Benoît Sibaud, Joël Thieffry, Storm, Ignatz Ledebur, lenod, reno, Sylvain Blandel, claudex, talou, Misc et etenil.
Modéré par claudex.
Licence CC By‑SA.

Étiquettes :

	rcng

	upstart

	runit

	systemd

	openrc

	lennart_poettering

	debian

[image: Technologie]

Ces dernier temps, la question de l'initialisation du système d'exploitation a été au cœur des trolls discussions. Nous allons faire un point sur les différentes approches mise en œuvre possédant une implémentation libre.

Dans cette première partie, nous allons voir arbitrairement quatre systèmes d'initialisation : OpenRC, rcNG, Upstart et runit.

Nous n'aborderons pas systemd du fait qu'il a déjà été évoqué dans de nombreux contenus (ici, ici et là par exemple).

Note : merci à Jarvis Jiehong, needs, Fopossum, Brndan, Joël Thieffry, Storm, MrSpackMan, Nils Ratusznik, Misc, reno, Sylvain Blandel, Benoît Sibaud, lenod,talou, etenil, qui sont les véritables auteurs de cette dépêche.

Sommaire

	
OpenRC
	Présentation

	Anatomie d'un script d'init OpenRC

	
Configuration
	Comportement global

	Paramétrage d'un service

	Avantages et inconvénients

	
rcNG
	Initialisation

	Lancement des services

	
Upstart
	Présentation

	Utilisation

	Anatomie d'un script d'init Upstart

	Avantages et inconvénients

	
runit
	Fonctionnement

	
Services
	Exemple de service : git-daemon

	Journaux

OpenRC

Présentation

OpenRC est un système d'initialisation du système lancé au moment du début du port Gentoo/FreeBSD. Il cherche à être indépendant du système sous-jacent. Il s'adapte à diverses implémentation d'init. Le précédent système d'initialisation de Gentoo s'appuyait massivement sur des script bash. Lors de l'initialisation du port Gentoo/FreeBSD il est devenu indispensable d'utiliser une solution plus portable : c'est dans cette optique que Roy Marples a lancé le développement d'OpenRC.

OpenRC, bien qu'utilisant sysinit sous Gentoo par exemple, s'affranchit des niveaux d'exécutions (runlevels) habituels en introduisant la notion de niveaux d'exécutions nommés. Ainsi, lors du démarrage du système, on passera du niveau boot au niveau default.

Les principaux avantages d'OpenRC sont sa rapidité, sa gestion des dépendances entre services, et la possibilité de paralléliser (dans une certaine mesure) le démarrage des services.

On trouve par défaut, sur une installation OpenRC, les niveaux d'exécution suivants : boot, default, shutdown et sysinit. Dans ces répertoires se trouvent des liens symboliques pointant vers /etc/init.d où se trouvent effectivement les scripts d'init. Le binaire /sbin/rc est au centre du système. Il est généralement invoqué via le script /etc/rc.

Anatomie d'un script d'init OpenRC

Nous allons prendre l'exemple de metalog, un des gestionnaires de journaux (system loggers) disponible sous Gentoo.

#!/sbin/runscript
Copyright 1999-2011 Gentoo Foundation
Distributed under the terms of the GNU General Public License v2
$Header: /var/cvsroot/gentoo-x86/app-admin/metalog/files/metalog.initd,v 1.5 2011/09/23 03:15:23 vapier Exp $

extra_started_commands="buffer unbuffer"

PIDFILE=/var/run/metalog.pid

depend() {
 need localmount
 use clock hostname
 after bootmisc
 provide logger
}

ssd() { start-stop-daemon --exec /usr/sbin/metalog --pidfile "${PIDFILE}" "$@" ; }

start() {
 ebegin "Starting metalog"
 ssd --start -- \
 --daemonize --pidfile="${PIDFILE}" ${METALOG_OPTS}
 eend $?
}

stop() {
 ebegin "Stopping metalog"
 ssd --stop
 eend $?
}

buffer() {
 ebegin "Enabling log buffering"
 ssd --signal USR2
 eend $?
}

unbuffer() {
 ebegin "Disabling log buffering"
 ssd --signal USR1
 eend $?
}

Les cibles par défaut des scripts sont start, stop et restart.

Ce script est un bon exemple de la versatilité d'OpenRC puisqu'il définit deux nouvelles cibles buffer et unbuffer. Bien que la cible restart ne soit pas définie, elle existe tout de même.

La partie depend liste tous les services nécessaires au bon fonctionnement du programme. On voit dans ce cas que metalog n'a pas besoin du réseau pour démarrer (il y aurait un need net déclaré sinon), et il fournira au système le service logger nécessaire au lancement d'autres services.

Configuration

La configuration des services lancés par OpenRC est relativement simple et se fait par l'intermédiaire des fichiers de configuration portant le nom du service se trouvant dans le répertoire /etc/conf.d et du fichier global /etc/rc.conf.

Comportement global

La configuration d'OpenRC est regroupée dans le fichier /etc/rc.conf. Très abondamment commenté, il permet par exemple de définir si le boot doit être interactif ou parallélisé.

Paramétrage d'un service

Pour paramétrer un service, il doit y avoir une entrée correspondante dans le répertoire /etc/conf.d. Les fichiers présents dans ce répertoire servent à passer des arguments supplémentaires aux démons. Ils sont toujours abondamment commentés et simples à comprendre.

Si nous reprenons notre exemple de metalog, le fichier correspondant dans /etc/conf.d est le suivant :

/etc/conf.d/metalog
$Header: /var/cvsroot/gentoo-x86/app-admin/metalog/files/metalog.confd,v 1.7 2006/02/08 01:04:02 vapier Exp $

Some useful options:
-a Log with buffering
-s Log without buffering
See `metalog --help` for more

METALOG_OPTS=""

Options used by /usr/sbin/consolelog.sh

Space delimited list of devices to write "console" messages to
#CONSOLE="/dev/console /dev/tty10"
CONSOLE="/dev/tty10"

Format of logging (make sure you use single quotes)
FORMAT='$1 [$2] $3'

Avantages et inconvénients

OpenRC est portable. Il est utilisé sous Gentoo par défaut et peut être utilisé sous FreeBSD et NetBSD sans difficulté.

L'utilisation des niveaux d'exécution nommés permet d'en créer des spécifiques très facilement. On peut, pour un ordinateur portable par exemple, créer un niveau d'exécution nommé « battery » et indiquer au système, via un événement ACPI, de passer à ce niveau d'exécution lorsque le portable fonctionne sur batterie. Nous pouvons ainsi arrêter des services précis pour économiser de l'énergie.

C'est en couleurs ! On voit très vite quand il y a du rouge dans le démarrage ! Et le rouge, c'est mal.

Après 5 ans de développement, il était tout de même utilisé quotidiennement par des milliers d'utilisateurs en ~arch (la version de test de Gentoo) sans aucun problème.

Depuis la version 0.11.8 (disponible dans l'arbre portage depuis le 7 décembre 2012) OpenRC est considéré comme stable et peut donc être utilisé par tous les gentooistes sans risque de casser entièrement son système de démarrage. La lecture du guide de migration en anglais reste néanmoins une bonne source d'information pour bien comprendre les différences entre le baselayout-1 et le baselayout-2 et les modifications éventuelles à apporter à son système pour profiter pleinement des capacités de ce système d'initialisation.

Il est à noter que les versions 0.12 et supérieures (toujours en ~arch) disposent du support des CGroups. De nombreuses fonctionnalités d'OpenRC sont décrites sur le wiki officiel Gentoo dans la catégorie OpenRC. Dernier inconvénient, les scripts d'init doivent être ré-écrits pour OpenRC : en effet, il n'utilise pas ceux disponibles pour les autres distributions plus « traditionnelles ».

Cependant, peu de distributions se sont penchées dessus.

rcNG

On parle ici de l'init sous NetBSD, FreeBSD et DragonFlyBSD. Le principe de base est classique :

	un init simple et robuste ;

	du shell bourne (évolution d'ash).

Initialisation

init est lancé par défaut après le chargement du noyau. Il initialise les terminaux, gère les journaux de session et l'état du système. Il est configuré par /etc/ttys qui détermine la nature des différents terminaux. C'est un automate à état fini qui essaye de remplir plusieurs objectifs comme on peut le lire dans les notes d'implémentation :

	Un traitement fasciste des signaux. Y compris ceux émanant du matériel :

	SIGSYS (appel système inexistant) est suspect, on appelle la routine qui détermine si le problème se produit souvent avant, éventuellement, de déclencher le désastre ;

	SIGABRT, SIGFPE, SIGILL, SIGSEGV, SIGBUS, SIGXCPU, SIGXFSZ dénotent les erreurs irrécupérables et conduisent irrémédiablement au désastre ;

	SIGHUP, SIGINT, SIGTERM, SIGTSTP, SIGUSR1, SIGUSR2 permettent à l'utilisateur de déclencher un changement d'état.

	Une prise en charge élégante des erreurs fatales en essayant, par exemple, d'envoyer un message sur la console et d'attendre un peu avant de redémarrer.

	Une prise en charge des fils la moins coûteuse possible :

	ne pas surveiller un processus endormi ;

	ne pas utiliser SIGCHILD, jugé trop coûteux ;

	appliquer une heuristique pour quitter rapidement getty ;

	gérer les appels systèmes interrompus (EINTR) en cas de changement de transition.

L'automate lui même est défini ainsi :

	mode mono-utilisateur ; en sortant, passer à 2 ;

	lancement du mode multi-utilisateurs ; en sortant, aller à 3 ; retourner à 1 si erreur ;

	lecture du fichier ttys(5) ; en sortant, aller à 4 ;

	mode multi-utilisateurs ; aller en 5, 6 ou 7 suivant le signal envoyé ;

	mode nettoyage (relecture du fichier tty(5) et application des modifications) ; aller en 4 ;

	mode ennuyeux (système verrouillé : pas de nouvelles sessions) ; aller en 5 ou 7 suivant le signal reçu ;

	mort ; signaler tous les fils (SIGHUP originel : raccrocher), attendre 30 secondes et aller en 1.

Lancement des services

Ce qui nous intéressera particulièrement est la transition 2. Celle-ci lance l’exécution du script /etc/rc.

Rc, dit NG, est le système mis en œuvre par NetBSD puis FreeBSD. Il est également à l'origine du système utilisé jusqu'à très récemment par ArchLinux. Il se situe historiquement dans la lignée des init dits BSD. Mais il remplace avantageusement les scripts historiques /etc/rc.service par quelque chose du plus souple et de facile à configurer.

Il va lancer dans le bon ordre les différentes tâches nécessaires au démarrage du mode multi-utilisateur. Chaque tâche correspond à un script dans le répertoire /etc/rc.d qui effectue en principe une tâche simple (en moyenne 64 lignes par script, commentaires compris). Les scripts trop complexes tendent à être éliminés au profit d'autres solutions. Par exemple la commande jail qui lance les conteneurs de même nom a été réécrite. Cela permettra de remplacer plus de 700 lignes du script de rc par un simple jail -c.

L'ordre de lancement est évalué en fonction des mots clés PROVIDE, REQUIRE et BEFORE présents dans les scripts. Chaque script est ainsi sourcé dans l'ordre. Le fichier /etc/default/rc.conf, fournit la configuration par défaut sous la forme variable=valeur qui peut être surchargée dans le fichier /etc/rc.conf.

Exemple de script de rc :

PROVIDE: syslogd
REQUIRE: mountcritremote cleanvar newsyslog
BEFORE: SERVERS

. /etc/rc.subr

name="syslogd"
rcvar="syslogd_enable"
pidfile="/var/run/syslog.pid"
command="/usr/sbin/${name}"
required_files="/etc/syslog.conf"
start_precmd="syslogd_precmd"
extra_commands="reload"

sockfile="/var/run/syslogd.sockets"
evalargs="rc_flags=\"set_socketlist \$rc_flags\""
altlog_proglist="named"

syslogd_precmd()
{
 local _l _ldir

 # Transitional symlink for old binaries
 #
 if [! -L /dev/log]; then
 ln -sf /var/run/log /dev/log
 fi
 rm -f /var/run/log

 # Create default list of syslog sockets to watch
 #
 (umask 022 ; > $sockfile)

 # If running named(8) or ntpd(8) chrooted, added appropriate
 # syslog socket to list of sockets to watch.
 #
 for _l in $altlog_proglist; do
 eval _ldir=\$${_l}_chrootdir
 if checkyesno ${_l}_enable && [-n "$_ldir"]; then
 echo "${_ldir}/var/run/log" >> $sockfile
 fi
 done

 # If other sockets have been provided, change run_rc_command()'s
 # internal copy of $syslogd_flags to force use of specific
 # syslogd sockets.
 #
 if [-s $sockfile]; then
 echo "/var/run/log" >> $sockfile
 eval $evalargs
 fi

 return 0
}

set_socketlist()
{
 local _s _socketargs

 _socketargs=
 for _s in `cat $sockfile | tr '\n' ' '` ; do
 _socketargs="-l $_s $_socketargs"
 done
 echo $_socketargs
}
load_rc_config $name
run_rc_command "$1"

Une fois son travail terminé, rc rend la main à init qui ouvre les terminaux. Le système est lancé. init n'a plus alors qu'à attendre la prochaine ouverture de session ou la prochaine transition. Les services peuvent être gérés en utilisant le script /etc/rc.d/_XXX_ [one|force]start|stop|status|restart ou via l’utilitaire service(8). Au moment de l’arrêt c'est le script /etc/rc.shutdown qui est invoqué.

Upstart

Présentation

Upstart est un système d'initialisation créé en 2006 par Scott James Remnant, employé alors chez Canonical. Bien que son développeur principal soit parti de Canonical, il est encore en développement. Il est écrit en C en utilisant la bibliothèque NIH Utility Library. La dernière version (1.10) est parue le 23 août.

Upstart gère le démarrage et l'arrêt des services en fonction d'événements. Il doit donc gérer un arbre de dépendances qui permet de définir à l'avance le comportement d'un service en fonction d'un événement.

Utilisation

La commande principale est initctl :

initctl status udev
udev start/running, process 330

Rien de bien nouveau au niveau des actions sur les services :

	start : démarrer le service ;

	stop : arrêter le service ;

	restart : relancer le service ;

	reload : recharger le service ;

	status : connaître l'état du service.

La commande permet d'avoir d'autres renseignements. Par exemple, pour lister les différents services :

initctl list
[...]
udev start/running, process 330
[...]

	udev : nom du service ;

	start/running : l'état ;

	process 330 : pid du processus lié au service.

Anatomie d'un script d'init Upstart

Les fichiers de configuration se trouve dans le répertoire : /etc/init/.

Exemple de configuration :

cat /etc/init/udev.conf
udev - device node and kernel event manager
#
The udev daemon receives events from the kernel about changes in the
/sys filesystem and manages the /dev filesystem.

description "device node and kernel event manager"

start on virtual-filesystems
stop on runlevel [06]

expect fork
respawn

exec /sbin/udevd --daemon

	start on : quand faut-il démarrer le service ?

	stop on : quand faut-il stopper le service (ici : runlevel 0 ou 6) ?

	expect fork : le processus s'attend à avoir une seule fois un fork (voir ici) ;

	respawn : permet de démarrer le service si celui-ci a été stoppé pour certaine raison (voir ici) ;

	exec : la commande à lancer.

Comme on peut le constater dans la documentation, il est possible de configurer un script de façon importante.

Avantages et inconvénients

Il est (ou a été) utilisé par défaut par de nombreuses distributions : Ubuntu, Red Hat Entreprise Linux, Fedora et Chrome OS. Ce qui démontre une bonne stabilité. Il est encore en développement, il essaie de rattraper le retard par rapport à systemd : logind, cgroups, …

runit

Présent sur Debian comme système de démarrage alternatif, runit est un remplaçant multiplate-forme de sysVinit, il se veut aussi simple et minimal que possible. Le développement de l'implémentation initiale n'est plus actif depuis fin 2009, mais il en existe une autre, introduite dans Busybox 1.3.0 et toujours maintenue.

Il permet de paralléliser (dans une certaine mesure) le démarrage, de définir des niveaux d'exécution nommés et de superviser les services.

Fonctionnement

Le fonctionnement de runit est plutôt simple :

	stage 1 (initialisation) : toutes les tâches d'initialisations du système sont effectuées ici, elles sont décrites dans /etc/runit/1 ; si l'une d'elles échoue, runit est capable de démarrer un shell d'urgence, sinon il lance le stage 2 ;

	stage 2 (stage principal) : lance et gère toutes les tâches de /etc/runit/2 ; celui-ci prend fin uniquement lors de l'extinction ou du redémarrage, il laissera alors la main au stage 3 ;

	stage 3 (extinction/redémarrage) : termine le stage 2 si celui-ci tourne encore, et effectue toutes les tâches d'extinction ou de redémarrage.

Services

Runit agit aussi comme gestionnaire de services et permet de gérer les démons grâce au programme sv. Ce dernier s'utilise de la manière suivante (pour plus de commandes voir la page de manuel sv(8)) :
sv [start|stop|status|restart] service.

Pour gérer ces services, deux répertoires sont utilisés :

	
/etc/sv/ qui contient un dossier pour chaque service, contenant un script bash run, qui se charge de lancer le service, et un sous-dossier log/ contenant lui aussi un script bash run qui lance cette fois-ci le programme d'écriture des journaux ;

	
/etc/service/ : c'est ici que l'on active/désactive un service ; ce répertoire ne contient que des liens symboliques, la commande typique pour activer un service est la suivante : ln -s /etc/sv/git-daemon/ /etc/service/.

Une fois le service créé et activé, on peut utiliser sv pour le gérer. Ci-dessous, un exemple assez simple mais amplement suffisant.

Exemple de service : git-daemon

Le fichier /etc/sv/git-daemon/run :

#!/bin/bash
exec 2>&1
echo 'git-daemon starting.'
exec chpst -ugitdaemon:git \
 "$(git --exec-path)"/git-daemon --verbose --reuseaddr \
 --base-path=/home/git/repositories /home/git/repositories

Vous noterez que chpst est un outil de runit permettant de changer l'état d'un processus. Ici on l'utilise pour changer le groupe et l'utilisateur sous lequel va tourner le service.

Le fichier /etc/sv/git-daemon/log/run :

#!/bin/bash
set -e

LOG=/var/log/git-daemon

test -d "$LOG" || mkdir -p -m2750 "$LOG" && chown gitlog:adm "$LOG"
exec chpst -ugitlog svlogd -tt "$LOG"

Vous noterez également que svlogd est aussi fourni par runit qui le définit comme le gestionnaire de journaux privilégié.

Et pour le lancer : sv start git-daemon !

Journaux

Si svlogd est utilisé, on peut alors consulter les fichiers journaux dans le dossier suivant : /var/log/git-daemon/ (dans le cas de notre exemple vu ci-dessus, sinon remplacer 'git-daemon' par le nom de votre service). Dans ce dossier, on trouve les fichiers suivant :

	
current : contient les derniers logs enregistrés par le service ; un moyen simple de les lire est d'utiliser la commande tail, par exemple : tail -f /var/log/git-daemon/current ;

	des fichiers nommés de la sorte : @ + horodate (timestamp) + .s ; lorsque current devient trop gros, svlogd le renomme selon la dernière horodate enregistrée, et crée un nouveau fichier current : c'est la rotation des fichiers journaux.

Pour gérer le format des journaux, ou pour toute autre tâche liée aux journaux, la page du manuel svlogd(8) devrait vous combler.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

