

Petit état des lieux du NoSQL

Posté par claudex le 07 mai 2012 à 14:16.
Édité par Bruno Michel, olivierweb, baud123, Buf, Christophe Turbout, Spack, mike.simonson, Benoît Sibaud, rakoo et thoasm.
Modéré par tuiu pol.
Licence CC By‑SA.

Étiquettes :

	nosql

	couchdb

	cassandra

	redis

	acta

	base_de_données

	elasticsearch

[image: Base de données]

Pendant longtemps, les bases de données relationnelles ont été l'unique solution pour enregistrer des données, ou en tout cas, la solution adoptée par défaut par beaucoup de monde sans plus de réflexion sur le sujet. Pourtant, certaines personnes considèrent que le problème de stockage de données est en fait multiple et qu'il convient de se poser de nombreuses questions :

	Est-ce que les données sont fortement structurées ou non ?

	Quel est le ratio entre les lectures et les écritures ?

	Est-il acceptable de perdre un enregistrement sur un million ? Sur un milliard ?

	Est-ce que les données sont réparties sur plusieurs data-centres ?

	Est-ce que la taille des données peut être multipliée par 10 en l'espace d'un mois ?

	Quelle indisponibilité du service peut-on se permettre ?

	Etc.

Les bases de données relationnelles proposent leurs réponses à ces questions ; elles peuvent paraître raisonnables dans bien des cas, mais pas toujours. Par exemple, les bases de données relationnelles sont très mal adaptées quand on veut privilégier les performances plutôt que la garantie d'écriture des données.

Aussi, pour répondre à ces problématiques différentes, un mouvement, NoSQL, a proposé d'adopter des outils différents, spécialisés pour certains cas d'usage. Certaines bases de données NoSQL sont destinées à traiter d'énormes volumes de données, d'autres sont conçues pour maximiser le nombre de requêtes par seconde qu'un serveur pourra traiter, etc. Notons en particulier que la plupart des plus gros sites web ont quitté le monde relationnel (Google, Facebook, Twitter, Amazon), ce qui tend à valider le besoin d'avoir d'autres outils que les bases de données relationnelles.

[image: Logo nosql]

NdA : Merci à Christophe Turbout, Thomas Douillard, Buf, olivierweb, Spack, baud123, Bruno Michel, mike.simonson et rakoo pour leur aide lors de la rédaction de cette dépêche

Sommaire

	
Base de données clef-valeur
	
Définition

	
Exemples

	
Base de données colonnes
	
Définition

	
Exemples

	
Base de données documents
	
Définition

	
Exemples

	
Base de données graphe
	
Définition

	
Exemple

	
Base de données hiérarchique

	
Base de données objet
	
Définition

	
Autres bases de données NoSQL

	
Avantages des bases de données relationnelles

	
UnQL le SQL du NoSQL

Base de données clef-valeur

Définition

C'est une simple correspondance entre une clef et une valeur (comme une table de hachage par exemple). L'intérêt par rapport à une bête table de hachage en mémoire, c'est de pouvoir mutualiser cette table sur le réseau sur un (ou plusieurs) serveur(s) dédié(s) afin de partager les informations sur tous les serveurs applicatifs.

Un autre avantage est la possibilité de gérer l'expiration des données. On rencontre souvent deux stratégies : limiter la taille globale de l'espace mémoire consommé (quand il n'y a plus assez de place pour enregistrer un nouvel élément, on éjecte un ancien selon un algorithme LRU) ou associer un temps de vie aux valeurs.

Pour garantir des performances maximales, ces solutions ne permettent généralement pas de parcourir des clefs mais juste de faire des lectures ou écritures sur une clef connue. Notons toutefois que Redis permet d'aller plus loin en proposant un typage des données en chaîne de caractères, listes, tableaux associatifs et ensembles triés d'éléments, et propose des opérations avancées propres à chaque type.

Les cas d'utilisation typiques sont l'utilisation en tant que cache, pour conserver les sessions d'un site web, comme stockage pour des files d'attentes, accumuler des événements bruts en vue d'en agréger des statistiques, et plus généralement pour toutes les données semi-persistantes (données que l'on conserve que pendant un laps de temps assez réduit pouvant aller de quelques secondes à quelques jours).

Exemples

	Memcached : les données sont stockées uniquement en RAM, lorsque le programme s'arrête, les données sont perdues. On imagine bien que c'est plus utile pour du cache que pour des données importantes.

	CouchBase : la version "compliquée" de memcached, avec cluster, interface d'administration et compagnie.

	Redis : toutes les données sont stockées en RAM mais il existe deux modes pour la persistance, souvent combinés ensemble (écrire dans un journal ou enregistrer régulièrement l'intégralité des données dans un fichier, opération souvent faite sur un nœud esclave).

Base de données colonnes

Définition

C'est un type de base de données fort semblable aux bases SQL, les données sont stockées de manière structurée, par exemple :

	Titre
	Auteur
	Score

	Actus ACTA en ce début mars
	Oumph
	15

	Petites brèves Ruby
	NoNo
	16

	Sortie du noyau Linux 3.3
	patrick_g
	109

Cette famille de bases de données provient des gros acteurs et visent donc à répondre à leurs besoins. Elles sont donc capables d'enregistrer des volumes très importants de données, travaillent généralement sur des clusters de quelques dizaines à quelques centaines de serveurs, souvent répartis sur plusieurs datacentres. Elles font souvent le choix de privilégier les performances au détriment du nombre de fonctionnalités supportées.

Exemples

	BigTable : la base de données de Google ;

	HBase : la base de données utilisée par le projet Hadoop ;

	Cassandra : la base de données NoSQL de la fondation Apache, initialement développée par Facebook.

Base de données documents

Définition

C'est un type de base de données destinée à stocker des documents (qui l'aurait cru ?). Assez proche du modèle des bases SQL, les bases de documents n'en offrent pas moins une souplesse bien plus grande. Certains documents d'une collection peuvent avoir des champs supplémentaires. Par exemple, on peut stocker un texte qui a un auteur et un contenu ; un article qui a, en plus du texte, une date, une revue d'origine ; un livre qui a, en plus du texte, un titre, une année de publication, un nombre de pages…

En outre, le contenu d'un document ne se limite pas à des attributs simples, on peut également avoir des tableaux (une liste de tags par exemple), voire inclure un autre document dans celui-ci. Par exemple, il est possible de stocker les commentaires liés à un article directement dans celui-ci, sous forme d'un tableau d'objets dépendants (même si ce n'est pas toujours une bonne idée en pratique ;-)).

Enfin, il est difficile de caractériser plus précisément les bases de données documents, car c'est la famille de bases NoSQL la plus diversifiée. D'un coté, on peut trouver des solutions dont le requêtage se fait avec du map-reduce et, de l'autre coté, MongoDB cherche "juste" à être un MySQL plus adapté pour les applications web modernes (avec un certain succès !) et à le remplacer.

Exemples

	MongoDB : la base de données documents la plus populaire actuellement ;

	CouchDB : une des toutes premières bases de données NoSQL, dont l'heure de gloire est probablement passée depuis un bout de temps, elle est accessible en HTTP directement (avec get, put…), ce qui la rend très accessible. Plus de détails dans un commentaire de LinuxFR.org ;

	Riak : une base de données documents dont l'une des forces est de pouvoir très simplement ajouter (ou retirer) un serveur.

Base de données graphe

Définition

Ces systèmes sont prévus pour stocker des graphes (dans le sens de la théorie des graphes), il y a donc des nœuds avec des attributs et, surtout, des liens entre les différents nœuds.

Un cas typique d'utilisation est le stockage de graphe RDF. Pour certains, c'est aussi le moyen le plus performant pour stocker des objets du paradigme orienté objet à cause des références entre ces derniers.

L'autre cas d'école des bases de données graphe est le stockage d'un réseau social. Cela permet de parcourir les relations entre utilisateurs. On s'en sert notamment pour faire des moteurs de recommandations : vous êtes sûrement intéressé par tel ou tel objet car beaucoup de vos amis et des amis de vos amis le sont aussi.

Exemple

	Neo4j : en Java ;

	FlockDB : utilisé par Twitter pour stocker son graphe social.

Base de données hiérarchique

Ces bases sont utilisées pour gérer des ensembles ainsi que des sous ensembles. Les bases de données géographiques utilisent souvent ce modèle.

Base de données objet

Définition

Les bases de données objets permettent de stocker la valeur des attributs objets (au sens de la programmation orienté objet) ainsi que les relations d'héritage et les références entre les objets. Certains systèmes permettent même d'exécuter les méthodes des objets directement dans la base de données.

Ces bases de données sont, en pratique, plutôt proches du modèle relationnel et plusieurs systèmes de gestion de base de données relationnelles permettent d'avoir un système accessible tant en mode relationnel qu'en mode objet.

Autres bases de données NoSQL

Enfin, il existe des bases NoSQL qui ne rentrent pas vraiment dans les cases précédentes. Par exemple, Pincaster est une base de données particulièrement bien adaptée pour les données géographiques, bien qu'elle puisse faire bien plus que ça.

Dans un style différent, Elastic Search propose une interface Rest au-dessus des index Lucene. Cela en fait une solution particulièrement efficace pour faire de la recherche, que celle-ci soit en full-text, avec des facettes, des critères multiples ou un mélange de tout cela.

Avantages des bases de données relationnelles

Il est clair que le NoSQL n'est pas adapté à toutes les situations.

Les bases NoSQL sont généralement assez limitées au niveau du support des transactions. Si l'édition d'un objet se fait en principe de manière atomique, dès qu'il s'agit de modifier plusieurs objets dépendant les uns des autres, la base n'offre plus les garanties qu'on retrouve avec le relationnel.

Plus globalement, les Propriétés ACID ainsi que les contraintes d'intégrité ne sont généralement pas implémentées par les bases de données NoSQL, cela délègue cette gestion à la partie applicative. Les optimistes diront qu'il est souvent plus facile de répartir la charge du côté applicatif que base de données et que cela permet donc d'avoir de meilleurs performances globales.

Le relationnel dispose également d'un langage de requête extrêmement puissant, qui offre des possibilités très larges, avec en particulier la possibilité de lier des tables entre elles, filtrer et trier selon de nombreux critères ou agréger les données. Ceci est particulièrement utile quand il s'agit de générer des rapports complexes, domaine dans le lequel les bases de données relationnelles sont très à l'aise.

Du fait de son langage de requête plus poussé et des optimisations qui peuvent en être tirées, les bases SQL sont souvent plus performantes sur les requêtes complexes qui nécessiteraient de rapatrier plus de données que nécessaire pour les traiter en NoSQL. Sinon, tant qu'on peut conserver les index en cache, les performances sont très bonnes quelque soit le type de bases de données. Par contre, certaines recherches spécifiques sont bien plus performantes avec des systèmes adaptés (par exemple, la recherche full-text avec Lucene via ElasticSearch).

UnQL le SQL du NoSQL

UnQL pour Unstructured Query Language est un langage de requête pour les bases de données NoSQL, il a été créé dans le but de pouvoir interroger des collections de données (et pas uniquement des tables) et ces données contiennent différents champs. En ne tenant pas compte de l'âge des deux langages, on peut voir SQL comme une spécification d'UnQL.

Pour l'instant, il n'y a pas d'équivalent à la partie DDL (data definition language) de SQL, ce qui peut se comprendre vu la grande diversité des conteneurs de stockage et l'absence de schémas pour beaucoup des bases NoSQL

NdM. : le site LinuxFr.org utilise côté NoSQL ElasticSearch et Redis, et côté relationnel MySQL.

Aller plus loin

	
Comparaison de différentes BD NoSQL
(1177 clics)

	
Tag NoSQL sur LinuxFr.org
(300 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/PICSnosql-logo.gif

	

 [image: NoSQL Datebase]

 Open Button

 Close Button

 		NoSQL Basics

		Reviews

		Guides

		Scaling

		Security

		NoSQL + AI/ML

		Interactive Tools

		Use Cases

		API Docs

		Resources

	

		

			

							

			

 Everything about NoSQL Systems – Types, Benefits, and Real-World Uses

 Whether you’re building a lightweight app or scaling a distributed platform, data storage choices matter. NoSQL has become a powerful alternative to traditional relational databases, but its ecosystem is broad and often misunderstood. This guide will help you cut through the noise.

 What Is NoSQL?

 At its core, NoSQL refers to “non-relational” or “not only SQL” databases—data storage systems that don’t rely on the traditional row-and-column table format of relational databases. Instead, they offer flexible models like documents, key-value pairs, graphs, or wide columns, depending on how your data is structured and accessed.

 The goal of NoSQL is not to replace SQL entirely. Rather, it addresses specific limitations in relational systems, especially when dealing with unstructured data, large volumes, or distributed architectures. This makes NoSQL a key part of modern tech stacks, especially for applications involving real-time data, microservices, big data, and global-scale services.

 SQL vs. NoSQL – Key Differences

 While both systems store and retrieve data, SQL and NoSQL serve different needs. Here’s how they compare across the most important dimensions:

 [image: Data Structure]

 Data Structure

 SQL databases use a fixed schema with tables, rows, and columns. The structure must be defined in advance, and every record follows the same format.

 NoSQL databases are schema-flexible. Data can be stored as JSON documents, key-value pairs, or graphs, allowing each entry to look different.

 [image: Scalability]

 Scalability

 SQL databases are typically scaled vertically, which means adding more power to a single server (CPU, RAM, etc.). NoSQL databases are designed for horizontal scaling—distributing data across many servers to handle high traffic and large datasets.

 [image: Query Language]

 Query Language

 Structured Query Language (SQL) is used in SQL databases to interact with data.

 Variants on NoSQL databases depend on the type: MongoDB can allow a SQL-like query language to be submitted and also executes entire queries from the shell, while Cassandra utilises its built-in CQL (Cassandra Query Language).

 [image: Transactions]

 Transactions

 SQL systems provide strong ACID compliance (Atomicity, Consistency, Isolation, Durability), ensuring strict data reliability.

 NoSQL systems vary: some support ACID at a document level, but many focus on performance and availability, sometimes offering only eventual consistency.

 Types of NoSQL Databases

 NoSQL isn’t one technology—it’s a category. Here are the main types:

 [image: Document Databases]

 Document Databases

 Store data as JSON or BSON documents, ideal for semi-structured data and flexible schemas. These are great for content management, catalogues, and applications with fast-evolving data models.

 		Popular tools: MongoDB, CouchDB

 		Use case: Product data, blogs, user profiles

 [image: Key-Value Stores]

 Key-Value Stores

 These are the simplest NoSQL databases: a giant hash table where each key maps to a value. Extremely fast and highly scalable, often used in caching and session management.

 		Popular tools: Redis, Riak, DynamoDB (in key-value mode)

 		Use case: Session storage, user preferences, shopping carts

 [image: Wide-Column Stores]

 Wide-Column Stores

 These are utilised in distributed systems at a large scale and offer rows and columns in a table with some type of difference in the columns associated with each row, not all the columns. Like a flexible spreadsheet.

 		Popular tools: Apache Cassandra, HBase

 		Use case: Time-series data, IoT, analytics workloads

 [image: Graph Databases]

 Graph Databases

 These focus on relationships between data. Nodes represent entities, and edges represent relationships—ideal for social networks, fraud detection, and recommendation engines.

 		Popular tools: Neo4j, ArangoDB, Amazon Neptune

 		Use case: Friend-of-a-friend queries, supply chain management

 Short History of The Rise of NoSQL

 NoSQL isn’t new—it dates back to the early 2000s when developers at companies like Google and Amazon started hitting the limits of traditional SQL systems.

 Relational databases were never designed to handle the scale and complexity of global services, real-time data, or rapidly changing application schemas. Systems like Bigtable (Google) and Dynamo (Amazon) paved the way for what would later become open-source and commercial NoSQL platforms.

 The term “NoSQL” itself gained traction around 2009, reflecting a broader movement. Startups and web companies were quick to adopt these systems, followed by enterprises facing big data and digital transformation challenges.

 When to Use NoSQL vs. SQL

 There’s no single best option—just the right one for your specific needs. Below are key decision points to help you determine whether a SQL or NoSQL database is the better fit.

 [image: Complex Queries]

 Complex Queries and Joins

 If your application needs to run multi-table joins, complex filters, or nested subqueries, SQL is the stronger choice. NoSQL databases generally avoid joins to maintain speed and scalability.

 [image: Data Integrity]

 Fixed Schema and Data Integrity

 SQL works best when your data model is well-defined and unlikely to change. It enforces constraints and relationships, making it ideal for systems where structure and integrity are essential.

 [image: Rapid Development]

 Rapid Development with Flexible Data

 NoSQL supports agile development with dynamic or loosely structured data. If your schema changes often—or doesn’t exist at all—document or key-value stores allow for faster iteration without costly migrations.

 [image: High Write Volume]

 High Write Volume or Throughput

 If you’re logging millions of events, capturing sensor data, or handling frequent updates at scale, NoSQL databases like Cassandra or DynamoDB are built to handle this kind of load efficiently.

 The CAP Theorem

 The CAP Theorem is a foundational idea in distributed systems, especially relevant when choosing a NoSQL database. It states that you can only guarantee two out of three properties at any one time:

 		Consistency – Every read receives the most recent write.

 		Availability – Every request receives a response, even if it’s not the latest data.

 		Partition Tolerance – The system continues to operate even if parts of the network fail or become unreachable.

 Most NoSQL databases make different trade-offs depending on their design goals. Here’s how a few well-known systems align with the CAP model:

 [image: MongoDB]

 MongoDB

 Prioritises Availability and Partition Tolerance.

 MongoDB is designed for high availability and scalability. In the event of a network partition, it continues serving data, though consistency may be relaxed temporarily.

 [image: Cassandra]

 Cassandra

 Also emphasises Availability and Partition Tolerance.

 Cassandra is optimised for high write throughput and a distributed architecture. It accepts writes even when parts of the system are unavailable and resolves conflicts later.

 [image: HBase]

 HBase

 Focuses on Consistency and Partition Tolerance.

 HBase sacrifices availability in the event of a partition. It’s commonly used in Hadoop ecosystems where strong consistency is more critical than uptime during failures.

 [image: Traditional Databases]

 Traditional SQL Databases

 Usually, they prioritise consistency and availability over partition tolerance since it often happens that the partitioning is a rarity.

 It will serve best in environments where network partitions are unlikely or irrelevant, just as in a centralised or single-node system.

 How to Use CAP in Practice

 Most modern applications experience network partitions at some point, especially in distributed or cloud-based systems. That’s why Partition Tolerance is usually non-negotiable—meaning you’re always choosing between consistency and availability.

 If your system must never serve stale data (like in banking or healthcare), consistency is your priority. If your system must always respond quickly, even during outages (like social media or e-commerce), availability might come first.

 For interactive content, consider adding a slider or toggle to let users pick any two guarantees and discover which database types support that configuration.

 Understanding CAP helps teams design systems that respond gracefully to failure, without sacrificing core user or business needs.

 Final Thoughts – Why NoSQL Matters Today

 NoSQL isn’t a fad or a replacement for relational databases. It’s a toolset that reflects how modern applications are built: distributed, fast, flexible, and often messy. As data becomes more varied and systems more global, NoSQL provides scalable, reliable options for developers and architects.

 That said, NoSQL comes with trade-offs. It’s not a silver bullet, and choosing the right type of database (or combination) requires understanding your data and your system’s needs.

 For most modern teams, a hybrid model is the norm—SQL, where structure and integrity matter, NoSQL, where speed and scale rule.

			 	

							

	

	

		

			

 Email: support[@]nosql-database.org

 Privacy Policy

 Partners

 [image: Online Gambling]

 Subscribe

	

	 © Copyright 2026 nosql-database.org | All Rights Reserved

	

					

						

					

		

EPUB/imagessections64.png

