

Phoseg, stockage et analyse de données phonétiques transcrites

Posté par Xavier Faure (site web personnel) le 14 décembre 2012 à 09:29.
Édité par Pierre Jarillon.
Modéré par patrick_g.
Licence CC By‑SA.

Étiquettes :

	linguistique

	phonétique

	reconnaissance_vocale

	reconnaissance_parole

[image: Technologie]

Bonjour à tous,

dans le cadre d'un projet j'ai besoin d'un module pour stocker et analyser des données phonétiques transcrites, par exemple avec l'alphabet phonétique international. Mon code commence à devenir (vaguement) utilisable : je le publie donc sous une licence GLPv3 : Phoseg est un module pour Python3 que vous trouverez à cette adresse.

J'ai essayé de coller à certains principes facilitant le travail en communauté ainsi que l'écriture de code lisible : tests unitaires, code et commentaires écrits en anglais, surveillance de la qualité du code par pylint, documentation fournie.

Concrètement, je cherche d'autres personnes susceptibles d'utiliser ou d'améliorer mon module. Si vous êtes un spécialiste de la phonétique, j'ai aussi de nombreuses questions à vous poser… De façon générale, n'hésitez pas à faire remonter vos remarques, je n'attends que ça, surtout si elles sont négatives !

Concrètement, Phoseg est un module Python qui se pilote avec la classe PhoSegObject :

from phoseg import PhoSegObject

Il s'agit d'abord de créer un objet PhoSegObject, par exemple avec des données de type IPA :

Rōma = [ɾoːma] en latin
obj = PhoSegObject(ipa = "ɾoːma")

Ces données phonétiques sont alors analysées et syllabisées automatiquement. La fonction de syllabation peut être celle de Phoseg ou une autre, que l'utilisateur fournira.

Si l'on veut imposer une syllabation particulière, on utilisera un format maison, le format SIPA :

obj = PhoSegObject(sipa = "(ɾ,oː,)(m,a,)")

On peut aussi utiliser les noms décrivant les sons, séparés par un point-virgule :

[a] "open front unrounded vowel"
[ĭ] "overshort close front unrounded vowel"
[r̥] "voiceless alveolar trill"
[t] "voiceless alveolar plosive"
sounds = ["open front unrounded vowel",
 "prenasalized overshort close front unrounded vowel",
 "voiceless alveolar trill",
 "voiceless alveolar plosive",
]
obj = PhoSegObject(soundsnames = ";".join(sounds))

Une fois l'objet initialisé, il peut alors nous donner les informations attendues :

structure (1)
ici, on vérifie que [ɾoːma] a une consonne, une voyelle, ce qu'on veut, une voyelle :
print(obj.cv_struct_identical_to(['c','v', '*', 'v']))

structure (2)
ici on vérifie que la deuxième voyelle de [ɾoːma] est longue :
print(obj.cv_struct_identical_to(['*','vː', '*', '*']))

syllabes et phonèmes :
print(obj.number_of_phonemes()) # =4 : [ɾoːma] possède 4 phonèmes.
print(len(obj)) # =2 : [ɾoːma] possède 2 syllabes.

syllabe ouverte, syllabe lourde :
"une princesse turque" : [yn pʀɛ᷉sɛs tyʀk]
myobj = PhoSegObject(sipa = "(,y,n)(pʁ,ε̃,)(s,ɛ,s)(t,y,ʁk)")
print(myobj[0].is_open()) # False : (,y,n) est une syllabe fermée.
print(myobj[0].is_heavy()) # True : (,y,n) est une syllabe lourde.

Voilà : il reste encore beaucoup de travail mais j'espère intéresser quelques curieux !

Aller plus loin

	
Phoseg
(237 clics)

	
article Wikipedia sur l'alphabet phonétique international
(64 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

