

Photos et traces gps dans un blog statique

Posté par gepolabo le 02 juin 2025 à 13:51.
Édité par BAud, cli345, Benoît Sibaud, orfenor et Arkem.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	pelican

	gps

	gpx

	auto-hébergement

[image: Internet]

Cette dépêche va présenter une méthode pour afficher sur un site personnel les traces, récits et photographies de balades (pédestres, cyclistes par exemple).

Comme le contenu à afficher est diversifié (texte, photographies, cartes), la solution retenue sera un blog. Dans un soucis de sobriété numérique, le site sera sans base de données.

Pour l'aspect esthétique, la barre de navigation et les cartes seront situées dans la partie gauche des pages et surtout, la carte ne bougera pas avec la navigation dans la page.

Sommaire

	
1 - Préparation de pelican
	a) Le moteur

	b) Installation du thème graphique

	c) Écriture du premier billet

	d) Génération de notre site

	2 - Peaufinage de base

	
3 - Gestion cartographique
	a) Gestion des cartes

	b) Gestion des fichiers de trace (gpx)

	c) Modification des gabarits

	
4 - Gestion des photographies associées à notre cartographie
	a) Fichier des billets

	b) Modification des gabarits

	c) Gestion des photographies

	
5) Dernières modifications
	a) Modifier les gabarits

	b) Ajuster les feuilles de style

	6) Conclusion

N'ayant pas trouvé d'alternative libre à Polarstep, la solution retenue se base sur les briques logicielles libres suivantes :

	un moteur de blog static : pelican (AGPL v3.0)

	des thèmes pour le blog

	des bibliothèques cartographiques : leaflet (BSD 2)

1 - Préparation de pelican

Pelican propose d'écrire chaque billet de blogs dans un fichier texte indépendant (au format markdown ou reStructuredText).

Pelican les convertit en html et l'organisation du site ainsi généré (catégories, mots-clefs, archivage) se fait par le biais de gabarits (qui sont dans un sous-répertoire templates)

a) Le moteur

L'installation ne sera pas développée ici, pelican étant disponible dans de nombreuses distributions.

Il faut créer la structure de travail (dans le répertoire personnel de notre choix) :

pelican-quickstart

b) Installation du thème graphique

En allant sur le dépôt des thèmes de pelican, il est possible de trouver le style graphique qui nous convient le mieux.

Nous allons utiliser le thème pelican-blue (sous licence MIT 2.0), qui a l'avantage d'être simple, et commençons son installation :

	création du répertoire theme dans notre structure de travail

	décompression de l'archive du thème dans le répertoire « theme »

	modification du fichier pelicanconf.py pour configurer notre site. Il faut adapter quelques variables :

SITENAME = 'Mon blog'
SITEDESCRIPTION = 'Mes souvenirs de vacances'
THEME = "./theme/pelican-blue"
STATIC_PATHS = ['images', 'gpx']

	modifications propres au thème. Souvent l'auteur d'un thème propose de le personnaliser à partir de variables déclarées dans le fichier de configuration.

c) Écriture du premier billet

On va créer notre premier billet

Title: Première sortie
Date: 2025-05-01
Modified: 2025-05-01
Category: Lieux
Slug: depart
Tags: bonjour, balade

Bonjour tout le monde ! Quelle chouette sortie j'ai faite.

d) Génération de notre site

On lance la première compilation :

make clean
make html

On peut voir le résultat :

	soit en ouvrant directement le fichier index.html (présent dans le répertoire output)

	soit en lançant un mini serveur web (make serve) et lancer son navigateur web à l'adresse http://localhost:8000/

Pour plus de renseignements sur pelican, je vous invite à vous rendre sur la documentation du projet.

2 - Peaufinage de base

On va maintenant nettoyer le code des gabarits, en supprimant les choses que l'on trouve inutiles ou qui nous déplaisent. Tout se passe dans le répertoire templates de notre thème.

	il y a les fichiers analytics.html et disqus.html

	une recherche par mot nous informe des éventuelles références à Google, Twitter, Facebook

On supprime les parties qui ne nous conviennent pas.

3 - Gestion cartographique

Nous attaquons désormais notre objectif : rendre visibles sur des cartes des fichiers de trace.

a) Gestion des cartes

On va maintenant configurer la gestion des cartes, par l'intermédiaire de leaflet. Comme l'indique sa page wikipédia, leaflet est très largement utilisé et très pratique.

On va donc

	le télécharger,

	le décompresser dans le répertoire static de notre thème

	modifier les entêtes de nos gabarits (cela se fait le plus souvent dans le fichier base.html) pour y ajouter au niveau <head> les références à leaflet :

 <link rel="stylesheet" href="{{ SITEURL }}/theme/leaflet/leaflet.css" integrity="sha256-p4NxAoJBhIIN+hmNHrzRCf9tD/miZyoHS5obTRR9BMY=" crossorigin=""/>
 <script src="{{ SITEURL }}/theme/leaflet/leaflet.js" integrity="sha256-20nQCchB9co0qIjJZRGuk2/Z9VM+kNiyxNV1lvTlZBo=" crossorigin=""></script>

Comme on a récupéré en local les fichiers, on met des chemins propres à notre arborescence (via {{ SITEURL }}/theme/).

b) Gestion des fichiers de trace (gpx)

Elle va se faire par l’intermédiaire d'un module supplémentaire https://github.com/mpetazzoni/leaflet-gpx (BSD 2).

De la même manière qu'on a intégré dans nos entêtes l'intégration de leaflet, nous allons ajouter une ligne pour faire référence à leaflet-gpx (bien vérifier le nom du fichier javascript) :

<script src="{{ SITEURL }}/theme/leaflet-gpx/gpx.js"></script>

Par rapport à la documentation officielle, on retire l'attribut defer (puisque nous utilisons les fichiers locaux et non distants).

Pour tester notre environnement, on va déposer dans notre répertoire gpx un fichier de trace, puis on va ajouter dans notre billet les éléments de cartographie de notre voyage :

<div id="map" style="width: 600px; height: 400px;"></div>
<script>
 var map = L.map('map');
 L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
 attribution: 'Carte et données : OpenStreetMap'
 }).addTo(map);
 var gpx = '/gpx/FICHIER.gpx';
 new L.GPX(gpx, {async: true}).on('loaded', function(e) {
 map.fitBounds(e.target.getBounds());
 }).addTo(map);
</script>

On regénère notre site web, et on peut visualiser notre billet

[image: Première version de notre billet]

Globalement, ça fait le boulot.

Mais on peut améliorer la chose : on peut par exemple cacher les marques de début et de fin d'itinéraire en insérant la ligne suivante après le async: true

markers: {startIcon: null, endIcon: null, }

Mais surtout, nous souhaitons que pelican génère automatiquement la partie consacrée au fichier de trace (alors que dans notre test, nous avons dû l'ajouter nous-même) !

c) Modification des gabarits

Si l'on veut simplement ajouter notre fichier de trace et que notre gabarit le traite, on va ajouter cette information dans les entêtes de notre fichier markdown ! En effet pelican permet de créer des variables qui seront utilisables dans nos gabarits.

Nous allons donc créer et utiliser une variable (qui s'appellerait… Gpx par exemple), qui stockera le nom du fichier gpx à afficher (les chemins sont relatifs à notre site web)

Title: Première sortie
Date: 2025-05-01
Modified: 2025-05-01
Category: Lieux
Gpx: /gpx/monfichier.gpx
Slug: depart
Tags: bonjour, balade

Nous modifions ensuite notre gabarit article.html pour qu'il génère la carte à partir de notre variable.

Pelican est très souple : basé sur Jinja2, il permet les boucles, les conditions et les variables.

Tous les éléments qu'il utilise sont insérés dans des accolades. Le fonctionnement est facilement lisible et compréhensible.

On va donc conditonner (avec if) l'insertion de leaflet.

{% if article.gpx %}
 <div id="map" style="width: 600px; height: 400px;"></div>
<script>
 var map = L.map('map');
 L.tileLayer('http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
 attribution: 'Carte et données : OpenStreetMap'
 }).addTo(map);

 var gpx = '{{ article.gpx }}';
 new L.GPX(gpx, {async: true,
 markers: {startIcon: null, endIcon: null, }
 }).on('loaded', function(e) {
 map.fitBounds(e.target.getBounds());
 }).addTo(map);

</script>
{% endif %}

Bien entendu, nous supprimons ces références du fichier markdown correspondant à notre billet de test.

On regénère notre site web, et on peut visualiser notre billet… qui n'a pas changé : tout fonctionne. Pour chacune de nos sorties, il suffit donc d'indiquer le fichier de trace dans les entêtes pour que la carte soit insérée automatiquement dans notre billet.

Passons maintenant à l'intégration de nos photos.

4 - Gestion des photographies associées à notre cartographie

Nous avons besoin :

	d'une image

	de ses coordonnées géographiques (latitude et longitude)

Pour cela, nous allons procéder de la même manière que pour le fichier trace : nous allons créer et utiliser des variables dans les entêtes des fichiers markdown.

a) Fichier des billets

Nous modifions encore une fois les entêtes en ajoutant autant d'informations (image, latitude et longitude) que de photos à afficher en miniatures.

Title: Première sortie
Date: 2025-05-01
Modified: 2025-05-01
Category: Lieux
Gpx: /gpx/monfichier.gpx
Slug: depart
Img: /images/image1.jpg
Lat: 49.895517
Lon: 2.295983
Img: /images/image2.jpg
Lat: 49.89443
Lon: 2.30137
Tags: bonjour, balade

On remarque ici que l'on a mis plusieurs images avec les mêmes noms de variables.

b) Modification des gabarits

Nous allons ensuite modifier les gabarits de pelican pour qu'ils positionnent des miniatures des photos sur notre trajet.

Nous allons à nouveau modifier notre fichier article.html, en y ajoutant (à la suite de notre précédente modification, dans la condition {% if article.gpx %}) le code suivant :

Nous commençons par indiquer l'icône qui s'affichera sur la carte à chaque photo mise en valeur

var MonIcone = L.icon({
 iconUrl: '/images/app-photo.png',
 iconSize: [36, 36]
});

Puis nous codons l'affichage du marqueur (qui sera géré par leaflet).

{% if article.img %}
 {% if article.img is string %}
 imageTxt = 'Description';
 L.marker([{{ article.lat }}, {{ article.lon }}], {icon: MonIcone}).bindPopup(imageTxt + '
plus de détail').addTo(map);
 {% else %}
 {% for n in range(article.img| length) %}
 imageTxt = 'Description';
 L.marker([{{ article.lat[n] }}, {{ article.lon[n] }}], {icon: MonIcone}).bindPopup(imageTxt + '
plus de détail').addTo(map);
 {% endfor %}
 {% endif %}

La difficulté réside dans la gestion des éléments répétitifs :

	s'ils sont plusieurs, on peut utiliser les méthodes python des listes.

	s'il n'y en a qu'un seul, cette méthode renvoie toutes les lettres de notre variable ! Il a donc fallu tester si celle-ci est une chaine de caractères ou une liste.

Les choix sont ici purement personnels ou démonstatifs :

	on a laissé une variable imageTxt en dur, elle pourrait être passée dans les entêtes de nos fichiers markdown

	le texte du popup peut être adapté (on pourrait y ajouter un lien direct vers notre image par exemple)

	le lien (ancre) est à créer dans notre fichier markdown

	la taille de l'image du popup est en dur (on peut passer par une feuille de style css)

On regénère notre site web, et on peut visualiser notre billet :

[image: Carte avec icones indiquant des lieux visités]

Et lorsqu'on clique sur une icône d'appareil photo, on voit bien notre popup :

[image: Popup avec la miniature]

c) Gestion des photographies

Comme indiqué plus haut, la taille des miniatures affichées peut se gérer :

	par CSS

	ou créer des miniatures (avec imagemagick) pour diminuer la charge de notre serveur (afficher une photo de 3000 pixels à 200 pixels n'est pas optimal). Dans ce cas, il suffira d'adapter notre gabarit pour lui indiquer où aller chercher les petites images (/images/miniatures/ par exemple)

Par contre, le point le plus compliqué est la gestion des coordonnées des photographies : il faut les rentrer à la main !

	Pour les photographies qui n'intègrent pas les coordonnées dans leurs métadonnées, il n'y a pas d'autre solution que d'aller chercher sur une carte (openstreetmap par exemple) et de trouver le lieu de la prise de vue et de repérer les coordonnées.

	Pour les photographies qui contiennent leurs coordonnées géographiques, on peut utiliser l'outil exiftool pour les récupérer. On peut éventuellement faire un script bash qui affiche les lignes d'entête pour notre billet (on n'a plus qu'à les recopier ou les rediriger vers un fichier texte) :

 for photo in $(ls ./content/images);
 do
 echo ""
 echo "Img: /images/"$photo
 LAT=$(exiftool -n -s3 -gpslatitude ./content/images/$photo)
 echo "Lat: "$LAT
 LONG=$(exiftool -n -s3 -gpslongitude ./content/images/$photo)
 echo "Lon: "$LONG
 done

Nous avons utilisé les options -n qui affichent les valeurs numériques au format décimal (celui utilisé par openstreetmap pour les coordonnées) et -s3 pour avoir la valeur du champ sans le nom de son attribut.

5) Dernières modifications

Nous venons de voir les différentes techniques qui permettent d'avoir le rendu que nous souhaitions. Et le résultat est déjà agréable à regarder.

Nous pourrions nous arrêter ici, mais vous voulons que la carte reste en permanence dans le menu latéral. La solution est de la mettre dans une balise <aside>.

a) Modifier les gabarits

Notre thème comporte déjà une telle balise : elle est dans le fichier base.html… ce qui signifie qu'il ne peut pas voir les informations sur les articles (donc nos entêtes) !

La solution va donc consister à déplacer, à l'intérieur du fichier article.html, tout notre code dans une section (que nous appellerons mamap :

{% block mamap %}
 Mettre ici tout le code sur notre gestion cartographique
{% endblock %}

Et dans le fichier base.html, on va insérer à l'intérieur des balises <aside> son appel (qui ne tient que sur deux lignes) :

{% block mamap %}
{% endblock %}

b) Ajuster les feuilles de style

Il faut surcharger le comportement de la carte gérée par leaflet :

 .leaflet-container {
 width: 400px;
 height: 300px;
 max-width: 100%;
 max-height: 100%;
 margin: auto;
 }

Et vérifier que les largeurs de la carte, et de <aside> soient compatibles.

Le résultat avec nos dernières modifications est désormais le suivant

[image: Site avec la carte à gauche]

6) Conclusion

Il est temps de finir cette dépêche, dans laquelle nous avons pu découvrir la souplesse et la richesse des gabarits gérés avec jinja2, ainsi que la facilité d'utilisation de leaflet.

Désormais, dans notre flux de travail, nos répertoires sont organisé ainsi :

content
 + gpx : les fichiers de trace
 + images : les photos que l'on veut afficher sur notre blog
 fichierXX.md : les billets
output : notre site web (généré par pelican)
theme
 + pelican-blue : le thème choisi
 + static
 + css
 + leaflet
 + leaflet-gpx
 + templates

Et la rédaction de nos billets consiste à :

	ajouter le fichier gpx de notre trace dans les entêtes

	ajouter les informations sur chaque photo que l'on veut voir (toujours dans les entêtes)

	écrire notre billet normalement (en y ajoutant éventuellement d'autres photos ou des ancres de navigation)

Cette dépêche démontre qu'il est possible d'avoir, avec les outils actuels, un rendu intéressant pour partager ses sorties. Et totalement utilisable en auto-hébergement.

Les outils utilisés sont très personnalisables et je vous invite à lire leurs documentations ou à parcourir leurs extensions respectives et de vous les approprier selon votre usage.

Malheureusement, la solution présentée ne conviendra qu'à une minorité d'utilisateurs. En effet, elle se base sur des éléments qui sont le plus souvent rendus invisibles (site web, transfert de fichiers, métadonnées) et elle est inutilisable sur téléphone.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/e54bcf39e5f9680aacc32b74785aa8d74a4d338ee7df7142b14deed1.jpeg
MON BLOG

Gategortes

Premiére sortie (3)

em psum dolor sit amet, c
jectus tortor,

ing nec. uitrices sed.

Maecenas Igula masss, varius
in porttor, orci nec nonumimy

EPUB/e650c0034ebdfcc5ba7181e7fff88e79a4fe0a16503b56eb9ce14925.jpeg
MON BLOG Premiere sortie

Archves

cantgores

N

caTeGoRes

molestie, enim est el

orem ipsum dolor sit amet. consectetur adipiscing el Sed non risus,
Suspendisse lectus tortor, dignissim Sit amet, acipiscing nec, ultriies sed,
dolor. Cras elementum ullrices diam. Mascenas ligula massa, variss ,
semper congue, eulsmod non, mi. Proin portitor, orcl nec nonumm

end ml nan fermentum lam sl it amet erat.

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/f01ee5b635a07410433bb25b20cf418cf2f31315ea41ea87ece42dd8.jpeg
MON BLOG

Premiére sortie (3)

non s, Saspendisse lects o

tur sapiscing et Sed

sclpiscing nec, ulricies ed, colr, Cras slementum ul
diam, Mascenas Iigula massa, verus 5, semper congue,
euismad non, m. Prain porttter, orci nec nonumimy
maleste, enim est lefend i, non fermentum diam nist st
G

Lorem fpsum dolor it amet, consectetur acipicig el Sec

non i, Suspendisse lecus ortor, dgnissm st ame

o, color. Cras

acipisang nec. ulr e

dam. Maccenas ligula massa, varus 3, semper congue
Lasomme

Lorem fpsum dolr it amet, consectetur scipicng eit. Sec
non risus, Suspendisse lecus tortor, dgnissim < amet,
acpiscing nic, lices sed, color. Cras clementum lrices
. Maecenas lgula massa, varus 5, semper congu

EPUB/c4f1c249ad15e7a0df1998f2a445eb24529203a0dfa6a2986c835473.jpeg
oNBLoc Premiére sortie (3)

Archves

Categories

eit. Sed non risus
d
s elementum e la massa, varius 3,

s5 tortor, nec, ultrici

dolr.
semper_congue, euismod o

tie, enim est leifend mi, non fermentum diam nis it an

EPUB/imagessections22.png

