

PHP sort en version 8.2

Posté par windu.2b le 05 décembre 2022 à 19:36.
Édité par vmagnin, bobble bubble, Ellendhel, palm123, Pierre Jarillon, Yves Bourguignon et Nils Ratusznik.
Modéré par bobble bubble.
Licence CC By‑SA.

Étiquettes :

	php

[image: PHP]

Après 3 Alpha, 3 Beta et 7 RC, et tout juste un an après la sortie de PHP 8.1, PHP, le langage de programmation pour le Web le plus connu et le plus utilisé, devrait être disponible après-demain en version 8.2, la sortie initiale prévue au 24 novembre ayant été reportée.

Petit tour (non-exhaustif) des nouveautés !

Sommaire

	

	
Nouvelles fonctionnalités
	
Classes en lecture seule (Readonly classes : RFC)

	
Dépréciation des propriétés dynamiques (Deprecate dynamic properties : RFC)
	Ajouter les méthodes magiques __get et/ou __set :

	Utiliser la classe stdClass de PHP (ou en hériter) :

	Ajouter l'attribut #[AllowDynamicProperties] à la classe :

	
Nouveaux types de retour : null, true, et false (Allow null and false as stand-alone types : RFC)

	
Masquage des données sensibles dans les logs (Redacting parameters in back traces : RFC)

	
Constantes dans les Traits (RFC)

	
Retrait du support de libmysql (Remove support for libmysql from mysqli : RFC)

	Liste complète des RFC

	PHP 8.3

Nouvelles fonctionnalités

Classes en lecture seule (Readonly classes : RFC)

Après la possibilité offerte par PHP 8.1 d'ajouter le mot-clé readonly aux propriétés d'une classe, c'est désormais directement sur la classe que l'on peut le faire.

Cela permet d'alléger le code, en évitant la répétition du même mot-clé sur chacune des propriétés d'une classe (au risque de l'oublier sur l'une d'entre elles, notamment lorsque le code vient à évoluer), et de le rendre plus clair (quand la classe est readonly, toutes ses propriétés le sont forcément).

Cela permet aussi d'empêcher la création de propriétés dynamiques (propriétés non déclarées dans le corps de la classe).

Le principal usage est bien évidemment les classes DTO (Data Transfer Object), en permettant d'instancier des objets garantis immuables.

On est donc passé de ceci, en PHP 8.0 :

class Book
{
 /**
 * Constructeur PHP utilisant la nouvelle syntaxe "Constructor property promotion" apparue avec PHP 8.0
 * @see https://stitcher.io/blog/new-in-php-8#constructor-property-promotion-rfc
 */
 public function __construct(
 private string $title,
 private string $author;
)
 {}

 public function getTitle(): string
 {
 return $this->title;
 }

 public function getAuthor(): string
 {
 return $this->author;
 }
}

$book = new Book('A Game of Thrones', 'George R.R. Martin');
$book->getAuthor(); // "George R.R. Martin"

Puis ça, en PHP 8.1 :

class Book
{
 /**
 * Les propriétés étant déclarées 'readonly', elles peuvent être déclarées 'public' sans risque.
 */
 public function __construct(
 public readonly string $title,
 public readonly string $author,
)
 {}

 // Suppression des getters, devenus inutiles
}

$book = new Book('A Game of Thrones', 'George R.R. Martin');

// On peut désormais appeler directement la propriété, sans craindre de la modifier
echo $book->author; // "George R.R. Martin"
$book->author = 'J.R.R. Tolkien'; // Error: Cannot modify readonly property Book::$author

Pour arriver finalement à ceci, en PHP 8.2 :

// utilisation du mot-clé 'readonly' sur la classe directement
readonly class Book
{
 /**
 * La classe étant déclarée 'readonly', les propriétés peuvent être déclarées 'public' sans risque,
 * sans pour autant avoir encore besoin de les déclarer 'readonly' une à une.
 */
 public function __construct(
 public string $title,
 public string $author,
)
 {}

 // Suppression des getters, devenus inutiles
}

$book = new Book('A Game of Thrones', 'George R.R. Martin');
echo $book->author; // "George R.R. Martin"
$book->author = 'J.R.R. Tolkien'; // Error: Cannot modify readonly property Book::$author
$book->genre = 'Epic fantasy'; // Uncaught Error: Cannot create dynamic property Book::$genre

ATTENTION !

Un objet readonly n'est pas forcément immuable ! Si un objet A a une référence vers un objet B (composition), le fait que cette référence soit readonly garantit uniquement que A ne pointera jamais vers C à la place de B. Mais cela n'empêche pas pour autant les propriétés de B de pouvoir changer dans le temps (si elles ne sont pas elles-mêmes readonly, évidemment).

Dépréciation des propriétés dynamiques (Deprecate dynamic properties : RFC)

Dans la continuité du refus d'ajouter une propriété dynamique sur une classe readonly, une Deprecated est désormais levée lorsqu'on fait appel à une propriété inexistante au sein de la classe/de l'objet.

Ex :

class User {
 public $name;
}
$user = new User;

// Assigns declared property User::$name
$user->name = "foo";

// Oops, a typo:
$user->nane = "foo";
// PHP <= 8.1: Silently creates dynamic $user->nane property.
// PHP 8.2: "Deprecated: Creation of dynamic property User::$nane is deprecated"
// PHP 9.0: Throws Error exception.

Néanmoins, les cas où il faut pouvoir continuer à créer des propriétés dynamiques ont été pris en compte. Pour cela, 3 solutions :

Ajouter les méthodes magiques __get et/ou __set :

class Post
{
 private array $properties = [];

 public function __set(string $name, mixed $value): void
 {
 $this->properties[$name] = $value;
 }

 // …
}

// …

$post->name = 'Name'; // Pas de message de dépréciation

Utiliser la classe stdClass de PHP (ou en hériter) :

/*
 * Ne faites pas ça : ça marche mais c'est une solution fortement déconseillée !
 */
class Post extends stdClass
{
}

$post = new Post();

$post->name = 'Name'; // Pas de message de dépréciation

Ajouter l'attribut #[AllowDynamicProperties] à la classe :

/*
 * Solution la plus recommandée pour gérer le code legacy, car l'impact est nul.
 */
#[AllowDynamicProperties]
class Post
{
}

$post = new Post();

$post->name = 'Name'; // Pas de message de dépréciation

À terme (PHP 9), le message passera de Deprecated à la levée d'une exception de type Error.

Nouveaux types de retour : null, true, et false (Allow null and false as stand-alone types : RFC)

Il est désormais possible d'indiquer que le type de retour d'une fonction/méthode est null, true, ou false. C'est notamment utile pour les fonctions de PHP qui renvoient une valeur, ou false si un problème a été rencontré.

Par exemple :

/*
 * Trouve la première occurrence de $needle dans $haystack
 * @return la portion de la chaîne, ou false si needle n'est pas trouvé.
 */
strstr(string $haystack, string $needle, bool $before_needle = false): string|false

Masquage des données sensibles dans les logs (Redacting parameters in back traces : RFC)

Il est désormais possible d'indiquer que la valeur d'un paramètre ne doit jamais se retrouver dans des traces d'erreurs. C'est évidemment très utile pour éviter qu'un mot de passe ne finisse en clair dans un fichier de logs.

Pour cela, il faut ajouter un attribut à la variable concernée, comme ceci :

function test(
 $foo = null,
 #[\SensitiveParameter] $bar = null,
 $baz = null
) {
 throw new \Exception('Error');
}
test(baz: 'baz');
/*
Fatal error: Uncaught Exception: Error in test.php:8
Stack trace:
#0 test.php(11): test(NULL, Object(SensitiveParameterValue), 'baz')
#1 {main}
 thrown in test.php on line 8
*/

Comme on le voit dans la trace d'erreur, la valeur du paramètre en entrée $bar a été remplacée par Object(SensitiveParameterValue).

Constantes dans les Traits (RFC)

Il est désormais possible d'inclure des constantes au sein d'un Trait.

La syntaxe suivante est donc désormais valide :

trait T {
 public const CONSTANT = 42;

 public function doSomething(): void {
 // Fatal Error
 echo T::CONSTANT;

 // OK
 echo self::CONSTANT;
 echo static::CONSTANT;
 echo $this::CONSTANT;
 }
}

Retrait du support de libmysql (Remove support for libmysql from mysqli : RFC)

Le support de la bibliothèque libmysql a été retiré de PHP, pour ne conserver désormais que le support de mysqlnd. Si vous utilisez PHP avec MySQL (que ce soit avec l'extension PHP mysqli ou avec PDO_mysql), vous ne devriez même pas vous en rendre compte : mysqlnd est utilisée par défaut depuis… PHP 5.4 (sortie en 2012).

Liste complète des RFC

La liste complète des apports de cette nouvelle version est consultable ici.

PHP 8.3

La prochaine version sera la 8.3, prévue (pour l'instant) pour novembre 2023.

La liste des nouvelles fonctionnalités n'est évidemment pas encore arrêtée, mais on peut d'ores et déjà la retrouver ici.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections35.png

