

Pourquoi les développeurs n'utilisent pas plus de machines à état ?

Posté par Ontologia (site web personnel) le 01 février 2013 à 11:43.
Édité par baud123, rootix et NeoX.
Modéré par rootix.
Licence CC By‑SA.

Étiquettes :

	informatique

	programmation

[image: Technologie]

Les langages de programmations, de quelques paradigmes qu'ils soient (bien qu'un peu moins pour le paradigme logique), sont basés sur le concept de liste d'instructions exécutées à la suite par la machine. La machine exécutant ce code est une machine à état, mais le programme n'est pas formellement pensé comme tel.

Les machines à état semblent pourtant un bon outil pour la programmation des logiciels que nous avons l'habitude de développer : facile à dessiner sur papier, permettant un découpage clair du fonctionnement de l'application.

Sans compter qu'une machine à état se patche plus facilement qu'un code classique où l'effet spaghetti peut vite impliquer des effets indésirables.

Les designers de Qt l'ont bien compris en permettant de définir des machines à état pour décrire le comportement du contrôleur.

C'est pourquoi certains se sont demandés si la programmation en machine à état ne devrait pas être plus pratiquée et aimée des programmeurs. C'est, par exemple, ce que se demande Willem van Bergen, carrément enthousiaste.

Celui-ci pense que c'est le stockage de l'historique qui est essentiel.

Plus circonspect, Alan Skorkin étudie la problématique de reprise de code, afin de comparer les approches, pour conclure que si les machines à états ne sont pas la panacée, elles sont très intéressantes si on conçoit le code avec.

Un très intéressant débat est né de cette polémique sur Hacker News.

Le point de vue du vieux singe (s/in/a/)

Un point de vue très intéressant d'un vieux programmeur nous racontant son expérience de HACMP en 1993. Il utilisait intensivement des machines à état pour gérer ses problèmes de protocoles gérant le cluster.

Selon lui les machines à état sont essentiellement boudées car mal codées à la base.

Pour être facile à utiliser il leur faudrait (traduction non littérale) :

	Une manière simple de gérer les contextes entre états, ce qui doit être fait le plus souvent à la main

	Un historique, dans les stacktrace, qui permette en particulier de connaître les changements d'états

	La manière de coder les FSM implique que l'on contourne la vérification de typage, il faut donc mieux utiliser de la génération de code qui permettra de générer un code propre

Il conclue que si davantage de bonnes machines à états étaient implémentées, avec une gestion de contexte, un historique, et une machinerie de test, d'avantages de programmeurs les utiliseraient.

Machines à état fini hiérarchiques

La définition d'une machine à état peut vite devenir lourde à mesure que se complexifie le comportement. C'est pourquoi, on est amené à utiliser des machines à état hiérarchiques : chaque état peut comporter une machine à état (récursivement) qui s'active lorsqu'on passe dans l'état la contenant. Cela permet de définir des macro-comportement composés de micro-comportements.

Dans une telle machine, à chaque cycle, on va d'abord tester qu'une transition n'est pas à effectuer dans un état père. En l'occurrence, on part du père de plus haut degré, pour tester les transitions possibles. S'il n'y en a pas, on descend à son fils (dans la direction de l'état duquel on part à la base) et ainsi de suite, jusqu'à tester la transition de l'état courant vers un autre état auquel il est lié.

De même, si on effectue une transition sur l'un des père de cet état, on doit choisir son fils le plus "profond".

C'est un type de machine un peu plus difficile tant à écrire, qu'à vérifier la validité de son graphe, mais ce type de machine à état offre une facilité de conceptualisation : on retrouve l'effet "empilement de boîtes noires" qui a fait le succès du logiciel.

Une solution ?

Un agent (un objet, par exemple) dont le cycle de vie est géré par une machine à état. Chaque transition est basée sur une équation booléenne de conditions et d'évènements :

type 'event transition =
 | Condition of (unit -> bool)
 | Event of 'event * (unit -> 'event list)
 | EventOr of 'event * (unit -> 'event list) * 'event transition
 | EventAnd of 'event * (unit -> 'event list) * 'event transition
 | EventXor of 'event * (unit -> 'event list) * 'event transition
 | EventNot of 'event * (unit -> 'event list)
 | ConditionOr of (unit -> bool) * 'event transition
 | ConditionAnd of (unit -> bool) * 'event transition
 | ConditionXor of (unit -> bool) * 'event transition
 | ConditionNot of (unit -> bool);;

L'agent possède un historique de ses transitions (et donc des évènements extérieurs).

Ainsi, les données restent dans l'objet, ce qui résout les problèmes de contexte. En effet, les état/transitions s'appliquant sur un objet, tout ce qui est relatif au contexte reste au même endroit et non coincé dans chaque état.

Gestion d'historique

La gestion d'historique peut sembler gadget, mais il peut devenir utile lorsqu'il va servir d'élément pour décider une transition. On acquiert ainsi une proto sémantique logique temporelle à peu de frais.

Conclusion

Les machines à état sont certainement discréditées du fait de leur présentation trop théorique qui est assénée aux étudiants lors de leur études. C'est néanmoins un outil puissant qui nécessite que l'on réfléchisse un peu plus sérieusement à son intérêt.

Aller plus loin

	
L'article de blog initial de Willem van Bergen
(406 clics)

	
La réponse de Alan Skorkin
(585 clics)

	
Un logiciel de génération de machine à état hiérarchiques
(1349 clics)

	
Un autre logiciel de génération multilangage de machine à état
(758 clics)

	
Une libairie de machine à état pour votre navigateur
(646 clics)

	
Le débat de Hacker News
(427 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

