

Processeur graphique : NVIDIA est mal parti pour les années à venir

Posté par Ontologia (site web personnel) le 08 septembre 2009 à 19:27.

Modéré par baud123.

Étiquettes :
aucune

[image: Technologie]

Les processeurs graphiques sont d'une puissance inégalée par rapport aux cœurs de calcul disponibles sur les processeurs x86. Malgré tout, leur coût d'accès mémoire reste trop important. Plus encore, les processeurs graphiques sont très spécialisés dans le calcul pur rendant difficile leur programmation.

Pour un développeur programmant autre chose qu'un jeu, il est difficile d'évaluer si transférer les calculs sur le processeur graphique est intéressant, d'autant plus si la complexité des calculs peut être variable.

Quelques voix s'élèvent pour pointer ces problèmes qui peuvent laisser penser que le traitement graphique hors du processeur n'a plus que quelques années devant lui.

La victime de cet état de fait pourrait bien être NVidia.
Un très intéressant billet sur Macbidouille, nous offrant un retour d'expérience d'un développeur utilisant OpenCL sous Snow Leopard (Mac OS X). Si la technologie Grand Central, qui simplifie le développement multithread est considéré comme une avancée pas trop difficile à absorber, la technologie OpenCL pose de très gros problèmes.

En effet, un processeur graphique se trouve "géographiquement" au loin, au bout d'un port PCI Express. Si le débit de ce sous-système a été largement amélioré depuis les AGP voire PCI, le transfert mémoire des données nécessaire au calcul est long et coûteux. Il faut ensuite évaluer si le processeur graphique sera plus intéressant en terme de coût de calcul eu égard à la possibilité de paralléliser lesdits calculs.

Le problème est assez bien présenté dans ce document : le processeur graphique est une brute en calcul pur, mais est très mauvais pour les tests (peu d'unités y sont consacrés), et donc pour les boucles. Il faut donc user de stratégies savamment tordues pour contourner cet épineux problème. Et même si on a réussi, on n'est même pas sûr que c'est intéressant, sans compter qu'on ne peut pas toujours connaître à l'avance la complexité des calculs… Dans un jeu 3D si, mais dans d'autres domaines…

Pour vous convaincre que coder avec OpenCL est un vrai bordel : http://s08.idav.ucdavis.edu/munshi-opencl.pdf.

La synthèse de tout cela ? Comme l'explique toujours aussi brillamment Tim Sweeny, CEO fondateur de Epics Game (les moteurs Unreal Tournament), le processeur graphique est mal barré. Trop rigide, trop "loin" de la mémoire centrale, trop de contraintes d'exploitation vont rendre difficile son utilisation pour la haute performance, même si de gros efforts sont faits.

Donc, rapide petit tour d'horizon sur l'état du marché et des feuilles de route/contraintes technologiques :	NVidia est seul, mais leader ;

	Intel ne sait pas faire encore des processeurs graphiques qui tiennent la route face au spécialiste, mais ça vient doucement mais sûrement ;

	Intel produit des processeurs et a l'intention de coller des traitements graphiques dans ces processeurs; dans ce cas fini le problème d'accès mémoire ;

Intel mise sur des architectures superscalaires, où au lieu de devoir donner à manger aux lointains successeurs du MMX en alignant gentiment les scalaires en mémoire, on pourra lui donner un tableau de pointeurs, et donc faire des calculs de manière plus flexible (diapositives 48 à 57 de la présentation de Sweeney) ;

AMD est en mauvaise posture mais possède ATI ;

	ATI est légèrement derrière NVIDIA en terme de performances, mais de peu ;

	AMD peut coller un traitement graphique dans ces processeurs.

Conclusion, NVidia est mal barré, et j'ai du mal à croire qu'ils vont s'en sortir en mettant des processeurs graphiques dans des ARM, quoique vue la taille du marché, cela pourrait peut-être suffire ?
Aller plus loin

	
Retour d'expérience d'un développeur utilisant OpenCL sous Snow Leopard (Mac OS X)
(23 clics)

	
The end of GPU, Roadmap, par Tim Sweeny, CEO fondateur d'Epics Game
(8 clics)

	
La difficulté d'adapter son code à un GPU, étude d'un cas simple
(14 clics)

	
Comment programmer avec OpenCL ?
(12 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

