

Profileur mémoire MALT 1.6.0 et support de Python

Posté par Sébastien Valat (site web personnel) le 30 janvier 2026 à 14:55.
Édité par Benoît Sibaud et Pierre Jarillon.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	mémoire

	gestion_mémoire

	profilage

[image: Python]

MALT c'est quoi ?

L'optimisation est une activité connue de bien des développeurs, fouiller, chercher dans son code, pour, peut être, gagner un peu de performance (beaucoup, parfois). Dans cette tâche ardue, face à des codes grandissants, massifs, utilisant de nombreuses bibliothèques externes, un outil central dans ce travail de fourmi : le profileur.

Le profileur fait partie des outils importants pour le développeur qui se soucie des ressources qu'il utilise. Il lui permet de chercher les points chauds dans son code, comprendre le cout de chaque fonction, chaque ligne implémentée. Bien des outils s'intéressent à une chose : bien utiliser votre processeur.

Mais que se passe-t-il si vous rencontrez des difficultés avec l'utilisation de votre mémoire ? Si vous pensez mal utiliser la fonction malloc() du C ou l'opérateur new du C++ ? Si vous avez oublié qu'une de vos variables globales occupe 10 Go (surtout en Fortran) ?

Publié il y a quelques années MALT (licence CeCILL-C) permet de répondre à la question en cherchant toutes les allocations mémoires faites par votre code. Cet outil avait fait l'objet d'un article sur LinuxFR en 2018 lors de sa mise en open source : Profileurs mémoire MALT et NUMAPROF.

Versions 1.6.0

Avancées

Depuis, cet outil fait son chemin avec l'ajout du support de Rust ainsi que nombreuses corrections et ajouts tels que la possibilité de dumper le profile mémoire juste avant que le système ne soit plein.

malt -o dump:on-sys-full-at=80% -o watch-dog=true ./mon_programme

également :
-o dump:on-app-using-rss=10G
-o dump:on-app-using-virt=80%
-o dump:on-app-using-req=500M

La possibilité de suivre les appels à mmap, mremap, munmap si vous les appelez directement dans votre code au lieu de laisser malloc faire son travail.

Support de python

MALT a initialement été développé dans le contexte du calcul à haute performance — HPC (High Performance Computing) donc surtout pour le C / C++ / Fortran / Rust.

Dans la communauté scientifique, nous voyons dans les laboratoires de plus en plus fleurir l'usage d'un langage à priori bien éloigné de nos prérogatives de performances : Python.

Dans un cadre de calcul scientifique, il est souvent utilisé plutôt comme un wrapper permettant d'appeler et d'orchestrer des bibliothèques en C /C++ / Fortran, elles, performantes. Quoi que l'usage amène aussi à l'écrire de certaines parties du code en Python grâce à Numpy ou Numba pour accéléré la partie calcule sur des tableaux ou autres frameworks d'exploitation des GPU.

La version 1.6.0 de MALT vient d'ajouter le support (encore quelque peu expérimental) natif de Python permettant d'analyser un code pur python ou mix Python / C / C++…. Il s'agit pour l'instant de la première version avec ce support, il reste donc du travail.

Sont supportés les versions Python supérieures à 3.11 ainsi que les environnements Conda / Anaconda / Venv. À l'heure de rédaction de cet article, cela comprend les versions 3.11 à 3.14.

MALT étant orienté C / C++, il ne supporte que Linux comme système d'exploitation. (NdM: la causalité évoquée ici devrait faire réagir des développeurs d'autres systèmes libres notamment :))

Utilisation sur Python

Si la commande malt fonctionne parfaitement, il est recommandé d'utiliser le wrapper malt-python qui adapte quelques configurations spécifiques à Python non encore automatiques.

malt-python ./script.py

équivalent à
malt --profile python-default ./script.py

liste des profiles
malt --profile help

Afficher le profile
malt-webview ./malt-script-py-6889.json

Profilage rapide

Notons que l'overhead de MALT est important en Python du fait du large nombre d'allocations générées par ce langage et de la méthode de résolution des piles d'appels pour retrouver les lignes dans votre code. Ces détails d'analyse peuvent être désactivés via :

Désactivé complète de l'analyse des piles
malt-python -p python-no-stack ./my_script.py

Analyse des piles par "sampling"
malt-python -p python-sampling ./my_script.py

Nouvelle interface

La version 1.6.0 arrive également avec une nouvelle interface graphique avec un code remis à jour

par rapport à sa version originale vieillissante.

[image: Capture annotation python]

Profil statique

Pour ceux qui voudraient échanger les profils avec d'autres sur d'autres OS, il est possible depuis la 1.6.0 de générer une version statique des pages de l'interface (hors annotation des sources et arbre d'appel navigable) via :

Toues les pages possible en statique
malt-webview -static ./report malt-progr-123456.json

Seulement la page de résumé.
malt-webview -static-summary ./report malt-progr-123456.json

Installation

MALT n'est pas encore disponible dans les distributions classiques, vous devez donc le compiler et l'installer à la main. Le nombre réduit de dépendances obligatoires en fait un outil relativement facile à installer.

On trouvera la procédure dans la documentation du projet.

Documentation

La documentation a été complètement ré-écrite et disponible sur le site officiel : documentation.

Outils similaires pour Python

Découvrir un outil est aussi l'occasion d'en découvrir d'autres. Restons dans le monde du Python, si MALT ne vous convient pas vous trouverez peut-être votre bonheur avec les outils suivants et complémentaires à MALT et eux totalement dédiés au Python toujours pour la mémoire :

	
Memray (Apache Public License 2)

	
Scalene (Apache Public License 2)

MALT se positionne par rapport aux deux présentés en apportant une analyse fine en annotant tout le source code de l'application. Il offre également une analyse des variables globales et TLS coté C/C++/Fortran/Rust.

Aller plus loin

	
Site officiel de MALT
(12 clics)

	
Dépôt github
(1 clic)

	
Premier article LinuxFR sur MALT
(5 clics)

EPUB/imageslogoslinuxfr2_logo-frozen.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/ea4e4ab3d4e67c74450c18c4106bca8af554d03493c5fdcf89dc0632.png
MALT WebView Home Sources Calltree Timeline Analysis Alloc Sizes Global Variables Stack Memory Threads Realloc

/home/sebv/Projects/inria/malt/examples/cpp/step-01-basic.cpp
e :
main

usleep(

pragma
for (size_t i

function_stack_mem_usage_recurse (
__libe_init_first _stack_mem_usage

__libe_start_main

_start

function_stack_mem_usage () ;
function_using_c_malloc();
function_using_cpp_new();
function_using_indirect_allocs_printf();
function_using_indirect_allocs_std_list();
function_template_zero_allocs () ;
function_range many_size();
function_realloc();

function_using_cop_new/()

function_using_c_malloc()

2344K8 fynction_using_indirect_allo.

S

234.4K8

]

std: allocator_traits<...>::all.

2344K8 g1q::_new_allocator<...>
- succes:

244K g1g::oxxlliliste..> M

0@ =~

Function Allocated mem.

EPUB/imagessections41.png
python

powered

