

Python 3.4 est sorti avec 7 nouveaux modules

Posté par Victor STINNER (site web personnel) le 19 mars 2014 à 10:29.
Édité par Davy Defaud, Benoît Sibaud, Nils Ratusznik, BAud, NeoX, claudex, palm123, Nonolapéro, jihele, Philippe F et tuiu pol.
Modéré par tuiu pol.
Licence CC By‑SA.

Étiquettes :

	postgresql

	mongodb

	lwn

[image: Python]

En termes de nouveautés, Python 3.4 est la version de Python qui en apporte le plus ! Il n’y a pas moins de 7 nouveaux modules entre Python 3.4 et 3.3 (séparés de 18 mois), tandis qu’entre Python 3.3 et Python 2.7 (séparés de 27 mois) il y en a huit. En termes de propositions d’améliorations de Python, 14 PEP (Python Enhancement Proposals) ont été implémentées dans Python 3.4. Cette version donne un sérieux coup de vieux à Python 2.7. La 2e partie de la dépêche détaille les principales nouveautés et la manière dont Python est développé.

Mon article Why should OpenStack move to Python 3 right now?, cité ci‐dessous, explique pourquoi Python 2 est désuet et pourquoi vous devez porter dès maintenant vos applications sur Python 3. L’article a été écrit pour le projet OpenStack mais reste général.

Sommaire

	
Nouveautés de Python 3.4
	
7 nouveaux modules
	
asyncio : nouveau module de programmation asynchrone, PEP 3156

	
ensurepip

	
enum : prise en charge des types d’énumération, PEP 435

	
pathlib : API orientée objet de manipulation de chemins du système de fichiers, PEP 428

	
selectors : multiplexage d’entrées‐sorties haut niveau et efficace, basé sur les primitives du module select, fait parti de la PEP 3156

	
statistics : fonctions pour calculer des statistiques mathématiques de données numériques, PEP 450

	
tracemalloc : tracer les allocations mémoires de Python, PEP 454

	Nouvelles fonctionnalités

	Améliorations significatives de modules

	Renforcement de la sécurité

	Amélioration de l’implémentation CPython

	Autres changements

	Maturation de Python 3.4

	Python Enhancement Proposals (PEP)

	Petite histoire de la création du module asyncio et du projet Tulip

	Rétroportages

	Pour la suite

Nouveautés de Python 3.4

7 nouveaux modules

asyncio : nouveau module de programmation asynchrone, PEP 3156

Le module asyncio est une boucle d’événements permettant de gérer des événements de types différents dans un unique thread : sockets (TCP, UDP, SSL), signaux UNIX, processus, primitives de synchronisation, etc. Bien que le cœur d’asyncio utilise des callbacks, la programmation se fait essentiellement avec des co‐routines. Une co‐routine est une fonction qui peut être mise en « pause » explicitement avec le mot clé yield. Pour être précis, asyncio utilise la nouvelle expression yield from de Python 3.3 qui est plus performante que yield. Le résultat de la co‐routine est renvoyé par un classique return result (autre nouveauté de Python 3.3, return ne pouvait pas être utilisé dans une co‐routine avant). Voici un exemple de « Hello World » asyncio utilisant une co‐routine :

import asyncio

@asyncio.coroutine
def greet_every_two_seconds():
 while True:
 print('Hello World')
 yield from asyncio.sleep(2) # <~~ la magie opère ici

loop = asyncio.get_event_loop()
loop.run_until_complete(greet_every_two_seconds())

Pour vous faire une idée de l’API choisie, je vous conseille de consulter la documentation du module asyncio et notamment les exemples :

	
« Hello World » par callbacks ;

	
« Hello World » avec des coroutines ;

	
écho client en TCP ;

	
exemple de processus fils (sous‐processus) ;

	
exemple affichant les en‐têtes HTTP de l’URL passée en la ligne de commande.

Pour une présentation plus générale et plus d’information, consultez la liste des conférences sur asyncio.

Pour mon travail chez eNovance, j’ai rétroporté asyncio pour Python 2 dans un nouveau projet appelé Trollius. La raison est que je souhaite remplacer eventlet par Trollius dans le projet OpenStack (en bref : un « petit » projet Python anodin de 2,5 millions de lignes, utilisé dans « le cloud »), en partie pour porter OpenStack sur Python 3. Mon article Use the new asyncio module and Trollius in OpenStack explique tout cela en détails.

ensurepip

Installeur du programme pip (et de ses dépendances), PEP 453. L’outil pip devient le gestionnaire de modules de référence pour Python. Le module ensurepip permet notamment d’installer pip lors de la création d’un nouvel environnement virtuel avec le module venv. Lire aussi Rationalizing Python packaging sur LWN.

enum : prise en charge des types d’énumération, PEP 435

Le module enum fournit une implémentation standard de types énumérés, permettant aux autres modules (tels que socket) de proposer des messages d’erreur plus explicites, et de faciliter le débogage en remplaçant les constantes opaques avec des valeurs énumérées rétro‐compatibles. Par exemple, print(socket.socket().family) donne AddressFamily.AF_INET au lieu de « 2 ».

Ce nouveau module a fait l’objet d’un article An “enum” for Python 3 sur le site LWN.

pathlib : API orientée objet de manipulation de chemins du système de fichiers, PEP 428

selectors : multiplexage d’entrées‐sorties haut niveau et efficace, basé sur les primitives du module select, fait parti de la PEP 3156

statistics : fonctions pour calculer des statistiques mathématiques de données numériques, PEP 450

tracemalloc : tracer les allocations mémoires de Python, PEP 454

Il existe plusieurs outils pour calculer l’utilisation mémoire d’une application Python, dont notamment Heapy, Pympler et Melia. Le principal défaut de ces outils est qu’ils groupent les allocations selon le type d’objet : quand la majorité de la mémoire est utilisée par des types très courants comme str ou tuple, il est très difficile de retrouver la partie du code comportant une fuite de mémoire.

Le nouveau module tracemalloc prend le problème à l’envers. Plutôt que de partir des objets haut niveau (en parcourant les structures du ramasse‐miettes, module gc), tracemalloc se greffe sur l’allocateur mémoire bas niveau pour tracer les allocations mémoire de Python. tracemalloc utilise ensuite les structures de Python pour reconstituer la pile d’appel où l’allocation a eu lieu et l’associe au bloc mémoire alloué.

Avec ces informations, tracemalloc permet de :

	fournir la pile d’appel où un objet Python a été alloué ;

	calculer des statistiques par fichier, par numéro de ligne ou par pile d’appel : taille totale, nombre et taille moyenne des blocs alloués ;

	calculer la différence entre deux instantanés (snapshots) pour détecter des fuites mémoires.

L’interface graphique [tracemallocqt](https://bitbucket.org/haypo/tracemallocqt) permet alors d’analyser finement ces données : filtrage, vue cumulative, groupage des allocations par fichier, ligne ou pile d’appel, comparaison deux instantanés, etc.

Un paquet rétro‐porté est disponible pour Python 2.5-3.3 : pytracemalloc. Il nécessite en revanche l’application d’un correctif, puis de recompiler Python.

Voir aussi la conférence que j’ai donnée à Pycon FR 2013 à Strasbourg sur tracemalloc : support PDF et enregistrement vidéo. Je donne également une conférence le mois prochain à Pycon Montréal 2014 sur le même sujet.

Nouvelles fonctionnalités

	Les fichiers et sockets nouvellement créés sont marqués comme « non héritables » (PEP 446) : ceci évite de passer des fichiers et sockets aux processus fils, ce qui était la cause de nombreux problèmes et failles de sécurité listés dans la PEP. Ce changement peut casser la compatibilité ascendante, mais c’est un choix pour le bien de l’humanité : « We are aware of the code breakage this is likely to cause, and doing it anyway for the good of mankind. » (extrait de la PEP).

	Nouvelle option en ligne de commande -I (isolate) pour lancer Python dans un mode isolé du système.

	Amélioration de la gestion des codecs qui ne sont pas des codages de texte (ex : base64 et rot13).

	Nouveau type ModuleSpec pour le système d’importation, PEP 451.

	Le format de sérialisation marshal est plus compact et plus efficace.

	La complétion des commandes par la touche de tabulation est maintenant activée par défaut dans l’interpréteur interactif. Par exemple, pri<TAB> est remplacé par print(.

Améliorations significatives de modules

	
single‐dispatch générique pour les fonctions dans functools, PEP 443 ;

	nouveau protocole (quatrième) de sérialisation pour le module pickle (PEP 3154) : plus compact et permetant de sérialiser des objets qui ne pouvaient pas l’être avec Python 3.3 ;

	le module multiprocessing a une nouvelle option pour éviter d’utiliser os.fork() sous UNIX (voir multiprocessing.set_start_method()) ;

	le module email a un nouveau sous‐module contentmanager et une nouvelle sous‐classe de Message (EmailMessage) qui simplifient la gestion MIME ;

	les modules inspect et pydoc sont désormais capables de faire de l’introspection de manière correcte sur une plus grande variété d’objets « callables » (qu’on peut appeler, comme une fonction), ce qui améliore la sortie de la commande help() dans l’interpréteur interactif de Python ;

	l’API du module ipaddress a été déclarée stable.

Renforcement de la sécurité

	Nouvelle fonction de hachage sûre utilisée par défaut, nommée SipHash (PEP 456), dont on peut lire des détails dans Python adopts SipHash sur LWN ;

	les fichiers et sockets nouvellement créés sont marqués comme « non héritables » (PEP 446) ;

	nouvelle option en ligne de commande -I pour lancer Python dans un mode isolé du système ;

	le module multiprocessing a une nouvelle option pour éviter d’utiliser os.fork() sous UNIX : les modes spawn et forkserver sont plus sûrs, car ils évitent de partager des données avec les processus fils. Sous Windows, les processus fils n’héritent plus de tous les handles héritables du parent, uniquement ceux qui sont nécessaires ;

	nouvelle fonction hashlib.pbkdf2_hmac(), offrant la 2e fonction de dérivation de clé basée sur un mot de passe de PKCS#5 : PBKDF2 ;

	prise en charge des versions 1.1 et 1.2 de TLS par le module ssl ;

	possibilité de récupérer les certificats depuis les dépôts de certificats Windows par le module ssl ;

	le module ssl côté serveur gère maintenant SNI (Server Name Indication) ;

	la classe ssl.SSLContext a été largement améliorée ;

	tous les modules de la bibliothèque standard qui gèrent SSL prennent maintenant en compte la validation du certificat serveur, y compris la validation du nom d’hôte (ssl.match_hostname()) et la vérification de la listes de révocation de certificats (Certificate Revocation Lists, voir ssl.SSLContext.load_verify_locations()) : ceci veut dire que c’est maintenant possible en écrivant le code approprié, mais la validation demeure désactivée par défaut pour des raisons de compatibilité ascendante et de simplicité d’utilisation (Cf. Python, SSL/TLS certificates and default validation sur LWN).

Amélioration de l’implémentation CPython

	
Safe object finalization (PEP 442) : les objets ayant un destructeur (méthode __del__) peuvent maintenant être détruits par le ramasse‐miettes quand ils font partie d’un cycle de référence (ensemble d’objets se référençant entre eux créant un cycle) ;

	dans la plupart des cas, les variables globales d’un module ne sont plus mises à None à la fin de l’exécution de Python ;

	les allocateurs mémoires sont désormais configurables, PEP 445 ;

	
The Argument Clinic DSL (PEP 436) offre une introspection complète des fonctions et méthodes implémentées en C. Seule une partie des fonctions C ont été converties vers Argument Clinic, le travail sera terminé dans Python 3.5.

Autres changements

Lisez What’s New in Python 3.4 (lien donné plus haut) pour voir la liste complète des nouveautés et changements de Python 3.4.

Maturation de Python 3.4

La maturation d’une nouvelle version majeure de Python prend de 18 à 20 mois. Pour Python 3.4, le développement a été programmé par la PEP 429 : Python 3.4 Release Schedule. Alors qu’initialement la date de sortie était prévue pour le 22 février 2014, il a été choisi de repousser la sortie pour corriger les bogues majeurs, plutôt que de publier une version boguée.

Le release manager de Python 3.4, Larry Hastings, a eu beaucoup de travail ces deux derniers mois pour canaliser les développeurs et focaliser le développement sur la correction de bogues. Comme d’habitude, l’ajout de nouvelles fonctionnalités était proscrit pendant deux mois dans la branche de développement principale (« default »). Entre la première version release candidate et la version finale, Larry a choisi de créer une branche privée et de choisir quels commits de la branche default méritaient ou non de faire partie de la future version finale. Ses choix ont été critiqués, mais Larry a tenu bon et a réussi à publier une nouvelle finale !

Python Enhancement Proposals (PEP)

L’ajout d’un nouveau module, les changements touchant au cœur de Python et autres changements majeurs exigent d’écrire une PEP (Python Enhancement Proposal). Ce document sert de support pour discuter les changements et évite notamment qu’une discussion parte dans une boucle infinie (discussion qui repart régulièrement de zéro). Si des variantes sont proposées, elles doivent être notées dans la PEP, et si possible la PEP doit expliquer le choix de la solution proposée.

Une PEP provoque souvent une bonne centaine de messages sur les listes de discussion python-ideas ou python-dev, voire plusieurs centaines dans les pires cas. L’auteur de la PEP doit alors tenter d’adresser chaque commentaire et compléter sa PEP au fur et à mesure. Le processus est usant, mais, de mon expérience, l’API après discussion est très largement supérieure à l’API initialement proposée. Discuter une PEP, document de quelques pages, est plus facile que de discuter le correctif de son implémentation (jusqu’à plusieurs milliers de lignes).

Parfois, il y a deux solutions équivalentes qui présentent à peu près les mêmes avantages et inconvénients. Dans ce cas, le BDFL (Benevolent Dictator for Life) (Guido van Rossum) doit trancher entre les deux solutions. Guido van Rossum peut déléguer son rôle s’il n’est pas disponible ou n’est pas intéressé par le sujet.

Pour Python 3.4, les PEP enum, pathlib et asyncio ont provoqué des discussions enflammées avec plusieurs centaines de messages, mais le résultat est là : l’API a été éprouvée. Même si une PEP est refusée, le document en tant que tel devient de facto la référence sur le sujet. Si quelqu’un redemande la même fonctionnalité, la PEP sert d’argumentaire pour expliquer le rejet de la fonctionnalité.

Le processus de rédaction de la PEP garantit également que Python reste un langage cohérent et homogène. D’ailleurs, PHP a adopté un processus similaire depuis PHP 5.3 (PHP: Request for Comments).

Petite histoire de la création du module asyncio et du projet Tulip

Suite à une discussion intitulée « Quelle est la meilleure bibliothèque de programmation asynchrone en Python ? » sur la liste python-ideas, Guido van Rossum s’est mis dans la tête d’écrire la sienne (bah tiens, tant qu’à faire).

S’en est suivi une discussion fleuve sur les bibliothèques existantes, sur les fonctionnalités attendues d’une telle bibliothèque, sur les callbacks versus co‐routines versus Deferred (Twisted) versus Future, etc. Cette discussion a donné lieu à une PEP 3156 : « Asynchronous IO Support Rebooted: the “asyncio” Module », qui a mis plusieurs mois à être écrite.

Une fois que les bases ont été mises en place, Guido s’est attaqué à une implémentation pour Python 3.3 sous le nom Tulip (le nom du module Python étant asyncio). Les deux frameworks majeurs étant Twisted et Tornado, il a repris la première lettre « T » et a choisi le nom Tulip : référence à son pays d’origine, les Pays‐Bas ?

La PEP et l’implémentation ont bénéficié de critiques des auteurs des frameworks existants qui ont permis des les améliorer. Les auteurs de Twisted auraient voulu une API plus proche de Twisted, mais Guido a volontairement choisi une API différente, notamment pour la syntaxe des co‐routines.

Rétroportages

Le développement de la plupart des nouveaux modules de Python 3.4 a débuté sur une version plus ancienne de Python. Des rétroportages sont disponibles pour les nouveaux modules :

	
asyncio, selectors : trollius pour Python 2.6-3.3 ;

	
enum : enum34 pour Python 2.4-3.3 ;

	
pathlib : pathlib pour Python 2.7-3.3 ;

	
statistics : stats pour Python 3.1-3.3 ;

	
tracemalloc : pytracemalloc pour Python 2.5-3.3.

Pour la suite

Le mois prochain aura lieu Pycon Montréal 2014, rencontre mondiale Python regroupant plusieurs milliers de développeurs. Les nouveautés de Python 3.4 seront présentées, et les prochains développements seront discutés.

J’espère que les efforts sur la programmation asynchrone Python vont se concentrer sur asyncio, et que de plus en plus de modules vont être compatibles. Il existe des event loops asyncio pour greenlet, gevent, libuv, GLib, Tornado et 0MQ. Il existe des pilotes de base de données pour PostgreSQL, Redis, MongoDB et Memcached. Il existe des clients et serveurs HTTP, Web sockets, et un worker Gunicorn. Voir la page asyncio third party pour la liste complète, certains étant encore expérimentaux.

Bien sûr, l’essentiel des évolutions de Python se fait dans des modules externes. Le dépôt Python PyPI comporte à l’heure actuelle 41 181 paquets.

Aller plus loin

	
Python 3.4
(430 clics)

	
What’s New In Python 3.4
(410 clics)

	
Why should OpenStack move to Python 3 right now?
(561 clics)

	
LWN: New features in Python 3.4
(101 clics)

	
Historique des changements de Python 3.4
(85 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

