

Python 3.8 : opérateur d’assignation, REPL async, Pickle v5 et plus

Posté par Anonyme le 15 octobre 2019 à 15:33.
Édité par Ysabeau 🧶, palm123, Davy Defaud, Benoît Sibaud, patrick_g et Pierre Jarillon.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	python

	python3

	sortie_version

[image: Python]

Łukasz Langa vient d’annoncer au nom de la PSF la disponibilité de CPython 3.8, l’implémentation de référence. Cette version est particulière puisqu’elle introduit une syntaxe controversée : l’assignation avec l’opérateur := qui permet d’assigner dans une expression et plus seulement dans un statement.

Le nombre de changements est assez impressionnant. Malgré la maturité de Python et sa popularité, il y a encore à faire !

Pour les systèmes stables, la version de référence reste la 3.6. Pour les autres, profitez de pyenv ou Docker pour utiliser les nouveautés de ce bon cru ! Découvrez‐les dans la suite de cette dépêche.

Sommaire

	
Opérateur d’assignation
	Le grand débat

	Arguments exclusivement positionnels

	Interpréteur async

	Pickle v5

	Et plus

Opérateur d’assignation

Jusqu’à présent, Python refusait tout simplement d’assigner une variable dans un if ou équivalent. Concrètement, if var = True: lève une erreur de syntaxe. Cela évite l’erreur classique d’assigner une valeur en oubliant le deuxième égal de l’opérateur de comparaison ==. Dans les langages autorisant l’assignation dans les expressions, l’utilisation de condition Yoda aidait à se défendre d’une erreur humaine. Dans Python, c’est, de toute façon, impossible.

Mais voilà, il y a certains cas où l’assignation et le test sont très liés. Et l’opérateur d’assignation est très pratique. Le cas le plus courant est l’exécution d’expression rationnelle :

m = re.match('motif', 'valeur')
if m is not None:
 ...

À partir de Python 3.8, un opérateur particulier permet d’assigner et de vérifier la valeur : l’opérateur :=. Les Anglo‑Saxons l’appellent walrus, c’est‐à‐dire morse (comme l’animal), car il ressemble à un smiley représentant les yeux et les défenses du morse. Désormais, on peut écrire le code précédant comme suit :

if (m := re.match('motif', 'valeur')) is not None:
 ...

La concision de cet opérateur est appréciable. Et il est difficile de le confondre avec l’opérateur de comparaison.

Le grand débat

Cet opérateur a été l’occasion d’un débat passionné. Est‐ce que cet opérateur est une variation de == ou bien faut‐il réutiliser le mot‑clef as comme dans except Exception as e ?

Guido van Rossum, créateur du langage, a utilisé son super‐pouvoir pour imposer le petit morse. Mais cela lui a coûté et il a démissionné de son poste de BDFL.

Arguments exclusivement positionnels

Python permet déjà de déclarer des arguments de fonction exclusivement nommés. Python 3.8 ajoute la possibilité de déclarer des arguments exclusivement positionnels. Voici un exemple :

def f(a, /, b):
 print(a, b)

f(0, 1) # valide
f(a=0, b=1) # invalide car a est nommé
f(0, b=1) # valide

Certaines API en tireront parti pour simplifier la validation des arguments. À noter, le nom d’un argument positionnel peut être réutilisé en argument nommé. Par exemple :

def f(a, /, **kw):
 print(a, kw)

f(0, a=1) # valide ! Affiche: '0 {"a": 1}'

Interpréteur async

Cette nouveauté n’est pas mise en avant, pourtant elle est bien pratique. En exécutant le module asyncio, CPython propose désormais un interpréteur Python acceptant le mot clef await pour exécuter une co‑routine :

Avant :

$ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio
>>> await asyncio.sleep(1)
 File "<stdin>", line 1
SyntaxError: 'await' outside function
>>>

Désormais :

$ python -m asyncio
asyncio REPL 3.8.0
Use "await" directly instead of "asyncio.run()".
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio
>>> await asyncio.sleep(1, result='hello')
hello

On pouvait avoir à peu près lʼéquivalent en lançant une boucle par co‑routine :

$ python3
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio
>>> asyncio.run(asyncio.sleep(1, result='hello'))
'hello'
>>>

À suivre !

Pickle v5

Pickle est un protocole de transmission de données dans un format interne à Python. Le Français Antoine Pitrou a proposé une version 5 du protocole permettant de référencer des données transmises hors bande. Cela permet d’utiliser un canal de communication plus performant pour les gros volumes de données qu’on veut transmettre à Python.

Petit rappel, Pickle n’est pas un format pour communication publique. Il est très facile d’injecter du code dans votre programme via ce protocole. Utilisez‐le uniquement pour les communications internes à vos projets.

Et plus

Le mini‐langage de formatage de chaîne accepte un nouveau spécificateur f-string : {var=} qui affiche le nom de la variable et sa valeur. Cela économise une duplication lorsqu’on écrit des messages de débogage.

CPython peut maintenant stocker les fichiers bytecode dans un dossier de cache spécifique, ailleurs que dans des dossiers __pycache__ un peu partout. Il faut pour cela définir le paramètre PYTHONPYCACHEPREFIX via différentes méthodes. Cela permet, par exemple, de livrer du code source en lecture seule, sans précompiler, tout en laissant la possibilité d’avoir un cache de bytecode parallèle.

Le travail du Français Victor Stinner sur l’optimisation de l’appel de fonction a été amélioré avec un nouveau protocole d’exécution nommé vectorcall. Pour le moment, c’est de la cuisine interne. Python 3.9 devrait exposer davantage d’optimisation possible dans le code Python.

On peut désormais spécifier un caractère Unicode par son nom dans les expressions rationnelles avec \N{NOM UNICODE} plutôt que par son code ou son encodage UTF-8. Ainsi, r'\N{EM DASH}' équivaut à '—' ou '\u2014'. La notation \N permet d’utiliser le mode brut r'' incompatible avec \uXXXX.

python -m json.tool accepte désormais un objet JSON par ligne avec l’option --json-line. Ce cas est courant avec les journaux au format JSON.

Il reste moult nouveautés et changements à découvrir. N’hésitez pas à consulter la longue page des nouveautés de cette version 3.8, notamment la section sur les API obsolètes retirées et les conseils de migration. Bonne découverte !

Aller plus loin

	
Détails des changements de Python 3.8
(226 clics)

	
Guido van Rossum se retire de la direction de Python
(222 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

