

Python 3.2

Posté par Victor STINNER (site web personnel) le 21 février 2011 à 09:58.

Modéré par Lucas Bonnet.

Étiquettes :

	python

	python3

	pypy

	ploc

	numpy

	logiciel

[image: Python]

Un an et sept mois après Python 3.1, voici une nouvelle version majeure de Python 3 : la version 3.2. Elle apporte notamment deux nouveaux modules (argparse et concurrent.futures), des améliorations sur les extensions écrites en C (API stable et marquage dans le nom de fichier des bibliothèques) et les modules compilés (fichiers .pyc) sont désormais rangés dans un dossier « __pycache__ ». Pour rappel, Python 3 corrige les erreurs de jeunesse de Python et harmonise la bibliothèque standard (relire la dépêche annonçant Python 3.0).

Pour faciliter le travail des développeurs des autres implémentations de Python (IronPython, Jython, Unladen Swallow, PyPy), la syntaxe, la sémantique et les fonctions builtins n'ont pas changé dans version 3.2, comme décidé par le moratoire (PEP 3003: Python Language Moratorium). Le moratoire prend fin avec la publication de Python 3.2.

La seconde partie de la dépêche présente en détail les nouveautés de Python 3.2, l'état du portage des modules vers Python 3, et évoque ce qui est prévu pour la suite.

Sommaire

	

	Nouveautés de Python 3.2 : nouveaux modules

	Nouveautés de Python 3.2 : __pycache__ et extensions

	Nouveautés de Python 3.2 : certificats (HTTPS)

	Nouveautés de Python 3.2 : optimisations et verrou global (GIL)

	Nouveautés de Python 3.2, en bref :

	Nouveautés de Python 3.2 : ce n'est pas fini !

	État du portage des modules vers Python 3

	Porter votre projet vers Python 3

	Et pour la suite…

Nouveautés de Python 3.2 : nouveaux modules

« PEP 389 : argparse. » Le nouveau module argparse vise à remplacer le module optparse (qui, lui-même, remplace getopt) : il gère les arguments positionnels, les sous-commandes, les arguments obligatoires, etc..

« PEP 3148 : concurrent.futures. » Le nouveau module concurrent.futures est une interface de haut niveau pour gérer indifféremment des processus légers (threads) ou des processus. Une tâche est représentée par un objet Future qui permet de lire l'état (en cours ou terminé), annuler la tâche, ajouter des fonctions de rappel, etc.. On peut lire le résultat ou l'exception avec un délai maximum exprimé en secondes.

Nouveautés de Python 3.2 : __pycache__ et extensions

« PEP 3147 : PYC Repository Directories (__pycache__) ». Le nommage du bytecode mis en cache (fichiers avec extension « .pyc ») ne fonctionne pas dans un environnement avec plusieurs interprètes Python. Chaque interprète écrase le cache des autres interprètes. Cette guéguerre des « .pyc » est plus prononcée depuis que les distributions Linux embarquent plusieurs versions de Python, et surtout avec l'arrivée de nouveaux interprètes comme Unladen Swallow. Le nom des fichiers PYC contient désormais le nom de l'interprète (ex : « os.cpython-32.pyc » pour le module « os ») et les fichiers sont rangés dans un dossier à part (__pycache__) pour éviter de polluer les dossiers sources.

« PEP 384 : API stable » : pour éviter d'avoir à recompiler les extensions Python pour chaque version de Python installée sur le système, un sous-ensemble de l'API Python a été défini comme étant l'API stable. En contrepartie, la structure interne des objets devient par exemple opaque, il faut utiliser des fonctions de plus haut niveau pour manipuler les objets. La finalité est de pouvoir distribuer un seul binaire par plate-forme pour toutes les versions de Python (à partir de la version 3.2).

« PEP 3149 : ABI Version Tagged .so Files. » De même que pour les fichiers PYC, le nom de fichier des extensions peut également être marqué avec le nom de l'interprète et des drapeaux de compilation (ex : « d » pour debogage, « m » pour pymalloc, « u » pour Unicode sur 32 bits). Il est alors possible de ranger les extensions au même endroit pour plusieurs implémentations de Python et plusieurs versions du même interprète (ex : Python 3.2 et Python 3.2 compilé en mode débogage).

Nouveautés de Python 3.2 : certificats (HTTPS)

La nouvelle classe « ssl.SSLContext » est un conteneur pour les données SSL persistantes comme les paramètres du protocole, certificats, clés privées et diverses options. « poplib.POP3 », « ftplib.FTP_TLS », « http.client.HTTPSConnection » et « urllib.request.HTTPSHandler » acceptent cette nouvelle classe. « urllib.request.urlopen() » ne supporte pas encore SSLContext, mais a deux nouveaux arguments pour vérifier le certificat du serveur.

Il est donc désormais possible de vérifier le certificat du serveur auquel on se connecte en SSL ou TLS, mais ce n'est pas fait automatiquement : le développeur doit modifier son code pour cela.

Nouveautés de Python 3.2 : optimisations et verrou global (GIL)

L'algorithme de recherche de sous-chaîne est désormais utilisé par les méthodes replace(), split(), rsplit(), splitlines(), rfind(), rindex() et rpartition() des objets bytes, bytearray et str.

Le verrou global (GIL) a été réécrit pour avoir des intervalles d'échange de contexte plus prédictibles et limiter la contention du verrou. Par défaut, Python change de processus léger toutes les cinq millisecondes. Les performances de programmes utilisant plusieurs processus légers devraient être meilleures et plus fiables.

Le module « pickle » est beaucoup plus rapide : sérialisation jusqu'à 2× plus rapide et dé-sérialisation jusqu'à 10× plus rapide. De même, le module « json » a également été optimisé.

Les verrous récursifs (threading.RLock) ont été réimplémentés en C et sont entre 10 et 15× plus rapides.

Nouveautés de Python 3.2, en bref :

	la fonction builtin « callable() » avait disparu de Python 3.0 : elle fait son retour, car hasattr(obj, "call") n'est pas un remplaçant correct (il faut également tester cet attribut sur les classes parent) ;

	avec l'option « -Wdefault » en ligne de commande, Python émet un avertissement « ResourceWarning » si un fichier ou une socket n'est pas fermé explicitement (même quand le ramasse-miettes fait le ménage) ;

	Les modules « email » et « nntplib » ont été corrigés pour distinguer correctement octets et caractères, et donc éviter des erreurs de décodage des courriels ;

	Le nouveau décorateur « @functools.lru_cache » permet d'ajouter très facilement un cache de type Least Recently Used à vos fonctions ;

	Le module datetime gagne une implémentation concrète des fuseaux horaires : « datetime.timezone » permet de créer un objet fuseau horaire avec un décalage fixe par rapport à UTC (l'heure universelle) — ce qui est suffisant la plupart du temps. « timezone.utc » a été ajouté pour utiliser simplement UTC ;

	Le module shutil gagne des fonctions « make_archive() » et « unpack_archive() » pour gérer des archives (compression et décompression) dans différents formats (« .tar.gz », « .tar.bz2 », « .tar » et « .zip ») ;

	Le module html gagne une fonction « escape() » ;

	« ftplib.FTP », « tarfile.open », « socket.create_connection() », « tempfile.TemporaryDirectory() », « subprocess.Popen » et d'autres gèrent maintenant le protocole de gestion de contexte (mot clé « with ») ;

	Le module gzip gagne deux fonctions pour compresser et décompresser des chaînes d'octets en mémoire : « compress() » et « decompress() » ;

	Le module pydoc offre une meilleure présentation de la documentation, ajoute un outil de recherche rapide, et « pydoc -b » ouvre directement la documentation dans un navigateur web ;

	Le module abc gagne deux décorateurs : « @abc.abstractstaticmethod() » et « @abc.abstractclassmethod() » pour marquer une méthode abstraite comme étant statique ou une méthode de classe ;

	Python 3.2 gère mieux les chaînes d'octets non décodables depuis l'encodage de la « locale » du système. Le module os gagne l'objet « os.environb » pour lire les variables d'environnement sous forme d'octets, et non pas de chaînes Unicode comme avec « os.environ ».

Nouveautés de Python 3.2 : ce n'est pas fini !

La liste des changements est très longue. Je n'ai listé que les changements qui me semblent les plus intéressants et visibles. Je vous conseille vivement de lire le document « What's New In Python 3.2 » pour consulter la liste exhaustive des changements.

État du portage des modules vers Python 3

Tous les modules Python ne sont pas encore disponibles pour Python 3, mais il y en a de plus en plus. Il y a plus de 300 projets marqués comme compatibles avec Python 3 sur l'index des modules Python (PyPI). Parmi les modules les plus populaires disponibles pour Python 3 :

	
Distribute : successeur de setuptools, sera remplacé à terme par distutils2 (lire The Hitchhiker’s Guide to Packaging pour en savoir plus) ;

	
Jinja2 : moteur de template ;

	
PyQt : binding de la célèbre bibliothèque Qt ;

	
PyGObject : nouveau binding de Gtk+, encore un un peu jeune (incomplet), remplacera PyGtk à terme ;

	
pygame : bibliothèque de création de jeux vidéo ;

	
NumPy : calcul scientifique ; SciPy 0.9 sera aussi compatible Python 3, version qui devrait sortir très prochainement ;

	
Sphinx : génération de documentation.

Voir aussi une liste plus exhaustive des modules disponibles pour Python 3.

Porter votre projet vers Python 3

Tutoriels et diverses informations pour porter votre projet vers Python 3 :

	
HOWTO: Porting Python 2 Code to Python 3 ;

	
Porting code to Python 3 ;

	
Python 3: Beautiful, Explicit and Simple ;

	
six : module facilitant l'écriture de projets compatibles Python 2 et 3 ;

	
2to3c : outil de conversion d'extensions C vers Python 3.

Et pour la suite…

De plus en plus de modules sont disponibles pour Python 3. Django, Zope et Pylons sont en cours de portage.

Python 3 commence à se généraliser dans les distributions GNU/Linux. Comme les développeurs Python ont abandonné la version 3.0 et que la 3.2 vient à peine de sortir, c'est donc naturellement Python 3.1 qui est utilisé pour le moment. État actuel :

	ArchLinux : utilise Python 3.1 comme interprète Python par défaut (commande « python », « python2 » lance Python 2) depuis octobre 2010 ;

	Ubuntu : Python 3 intégré depuis Intrepid ;

	Debian : Python 3.1 est entré dans Sid en janvier 2010 ;

	Fedora : depuis la version 13 ;

	Mandriva Linux : dans le dépôt « contrib », depuis 2010.0 ;

	Gentoo : Python 3.1 disponible.

L'édition 2011 de Pycon US se tiendra à Atlanta (Géorgie américaine) en mars. Python devrait migrer de Subversion à Mercurial à cette occasion, voire, si possible, juste avant. En France, Pycon FR n'a pas encore de lieu ou de date, mais est déjà prévu ; tenez-vous informé sur la liste de diffusion de l'Association Francophone Python (AFPy).

Tout est bon dans le Python !

Aller plus loin

	
python.org
(123 clics)

	
What's New In Python 3.2
(218 clics)

	
Documentation de Python 3.2
(105 clics)

	
Python Developer's Guide
(93 clics)

	
Annonce de la sortie de la version 3.2
(29 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

