

Python pour les sciences, une présentation

Posté par lejocelyn (site web personnel) le 18 février 2019 à 18:00.
Édité par nlgranger, theojouedubanjo, cracky, Julien Jorge, serge_sans_paille, BAud, Yves Bourguignon, palm123, Marco, Davy Defaud, Benoît Sibaud et ZeroHeure.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	tensorflow

	pytorch

	python

	calcul_scientifique

	fortran

[image: Python]

La sortie de Pandas 0.24.1 est l’occasion de parler de Python et du traitement des données scientifiques. Depuis quelques années, un certain nombre de projets ont émergé afin d’équiper Python pour les mondes de la recherche. Cette dépêche présente quelques‐uns de ces projets. Des ressources pour aller plus loin sont proposées en fin de dépêche.

Sommaire

	
SciPy
	L’écosystème SciPy

	Calculs et gestion des données

	Productivité et calculs haute performance

	Gestion de la qualité

	Jupyter

	Pandas

	Scikit-learn

	Matplotlib

	Statsmodels

	Numpy

	
Des compilateurs pour accélérer les traitements
	Cython

	Numba

	Pythran

	
Les logiciels à base de graphes de calculs : Tensorflow, Pytorch, etc.

SciPy

SciPy fournit un environnement de logiciels libres pour Python afin de faire des mathématiques, des sciences ou de l’ingénierie. En pratique, le terme « SciPy » fait référence à plusieurs entités :

	un écosystème de logiciels ;

	une communauté de personnes ;

	des conférences dédiées à Python et les sciences ;

	et enfin la bibliothèque SciPy, un composant de la couche SciPy qui fournit des routines pour les données numériques.

L’écosystème SciPy

Faire de la science informatisée avec Python repose sur un nombre restreint de paquets :

	
NumPy, le module pour le calcul numérique, qui définit le tableau numérique, le type matrix et les opérations basiques qui leur sont associées ;

	
La bibliothèque SciPy, une collection d’algorithmes numériques et des boîtes à outils spécifiques à des domaines tels que le traitement du signal, l’optimisation et les statistiques ;

	
Matplotlib, un module abouti pour réaliser des graphiques qui fournit des fonctions pour produire des graphiques 2D adaptés à la publication et quelques fonctions pour les graphiques 3D.

L’écosystème SciPy repose sur cette base pour ensuite proposer des outils plus spécialisés. Un aperçu de quelques‐uns de ces outils est donné dans la suite de l’article.

Calculs et gestion des données

	
pandas, qui fournit des structures de données simples à utiliser et performantes ;

	
SymPy, pour faire des mathématiques symboliques et de l’algèbre computationnelle ;

	
scikit-image, un ensemble d’algorithmes pour le traitement de l’image ;

	
scikit-learn, un ensemble d’algorithmes et d’outils pour l’apprentissage automatique ;

	
h5py et PyTables, qui permettent tout deux d’accéder à des données enregistrées au format HDF5 ; HDF5 est un modèle de données, une bibliothèque et un format de fichier pour enregistrer et gérer des données massives et complexes.

Productivité et calculs haute performance

	
IPython, qui est une interface interactive et complète qui vous permet de facilement travailler vos données et d’essayer vos idées ;

	le carnet Jupyter, une application en mode serveur qui permet de créer des documents de code en direct, avec des équations, des visualisations et des explications ; les carnets facilitent la reproduction, la réutilisation et le partage de code, que ce soit au niveau d’une équipe de recherche, pour la publication scientifique ou dans le cadre d’un cours ;

	
Cython, qui étend la syntaxe Python pour faciliter le développement d’extensions en C/C++ ;

	
Dask, Joblib et IPyParallel, qui sont des modules Python pour distribuer le traitement des tâches ; ces modules sont orientés vers le traitement de données numériques.

Gestion de la qualité

	
pytest, qui remplace progressivement le module non maintenu nose, est un environnement pour tester son code Python ;

	
numpydoc, qui est une convention et une bibliothèque pour documenter du code Python scientifique.

Jupyter

Jupyter-notebook est une application Web libre (BSD 3 Clause License) qui permet de partager des documents contenant code, équations, visualisations et texte. Python n’est pas le seul langage géré, plus de quarante langages sont pris en charge, dont R et Scala.

[image: Exemple d’entrées‐sorties sur un notebook]

Du point de vue de l’interface, il s’agit d’une console sous stéroïdes : on retrouve donc l’alternance entre des commandes et leurs sorties dans un environnement d’exécution. Le notebook de Jupyter ajoute à cela trois fonctionnalités majeures :

	la persistance de la session, ce qui permet de sauver toute une série de commandes et de la recharger ;

	l’édition et l’exécution de commandes par blocs ; le notebook se comporte ainsi comme un long script découpé en morceaux que l’on peut exécuter à la demande, ce qui est extrêmement utile pour des projets scientifiques exploratoires où l’on teste des idées à la chaîne ;

	la prise en charge de sorties graphiques comme des graphes, des images ou du texte mis en forme comme sur cet exemple. La bibliothèque Pandas présentée ci‐dessus ajoute aussi sa méthode de rendu pour mettre en forme les tableaux de données et faciliter la lecture.

Sur le plan technique, ce logiciel est découpé en trois parties : le serveur qui gère les sessions, les consoles (~onglets d’un terminal) qui affichent les blocs de code et leurs sorties, et enfin, pour chaque console, un noyau qui exécute les instructions dans un environnement persistant.

La conception du projet est volontairement modulable et facilite l’ajout de fonctionnalités via des extensions tierces, comme par exemple les méthodes de rendu pour les graphiques et les données.

Pandas

Pandas est une bibliothèque sous licence BSD pour manipuler et analyser des données. Elle permet de lire des tableaux provenant de différents types de fichiers (CSV, Excel, JSON), de filtrer des tableaux, de faire des extrapolations, des interpolations, de fusionner des tableaux de différentes manières. Pandas permet également de manipuler des données temporelles et des séries.

Il se combine idéalement avec iPython ou Jupyter afin de profiter d’un environnement dynamique pour développer des scripts. À noter qu’à partir de janvier 2019, les prochaines versions de Pandas ne fonctionneront qu’avec Python 3. Cette version est donc la dernière à fonctionner officiellement avec Python 2.7. Les versions 3.5, 3.6 et 3.7 sont aussi prises en compte. La liste des nouveautés et des corrections de cette nouvelle version est longue. Sans entrer dans les détails, voici les principales :

	
merge() permet maintenant de fusionner directement des objets du type DataFrame et Series sans passer par une conversion des objets Serie en DataFrame (GH21220) ;

	ExcelWriter accepte dorénavant mode comme argument afin de permettre l’ajout à un workbook (? à vérifier) existant lors de l’utilisation d’openpyxl (GH3441) ;

	FrozenList s’est vu ajouter les méthodes .union() et .difference(), cette fonctionnalité simplifie les groupby qui s’appuient explicitement sur l’exclusion de certaines colonnes — voir « Splitting an object into groups » pour davantage de précisions (GH15475, GH15506) ;

	
DataFrame.to_parquet() permet d’avoir un index comme argument, afin que l’utilisateur puisse outrepasser le comportement par défaut du moteur pour inclure ou au contraire omettre les index du DataFrame dans le fichier Parquet produit (GH20768) ;

	
DataFrame.corr() et Series.corr() acceptent maintenant les appels pour les méthodes de calculs génériques des corrélations, comme l’intersection d’histogrammes (GH22684) ;

	
DataFrame.to_string() accepte maintenant les décimaux comme argument, l’utilisateur peut spécifier quel séparateur décimal devra être utilisé dans la sortie (GH23614).

Quelques exemples de manipulation de données avec Pandas à partir du fichier tournagesdefilmsparis2011.csv :

import pandas as pd
datafile = "tournagesdefilmsparis2011.csv"
data = pd.read_csv(datafile, sep=";")
 [5, 4]])

data.head() affiche les premières lignes du DataFrame pandas.

[image: head]

data["realisateur"].describe() permet de décrire à travers les opérations statistiques de base une catégorie. Ici, il s’agit d’une catégorie non numérique, describe ne peut faire réaliser les moyennes, quartiles et autres opérations de base.

[image: describe]

Évidemment, une utilisation plus avancée de Pandas est possible. :) Il est possible de joindre plusieurs bases dans un dataframe avec la fonction merge() ou de procéder à manipuler les données avec des expressions rationnelles via replace().

Au niveau interopérabilité, des solutions existent pour enregistrer les dataframes de Pandas en fichier CSV, ODS ou Excel.

Scikit-learn

Scikit learn est une bibliothèque libre pour Python dédiée à l’apprentissage automatique. Elle est le plus souvent utilisée de pair avec Pandas, Matplotlib et les bibliothèques du projet SciPy. Scikit Learn fournit des fonctions pour analyser des données avec des algorithmes liés à l’apprentissage automatique (forêts aléatoires, régressions logistiques, algorithmes de classification et machines à vecteurs de support).

Matplotlib

Matplotlib est une bibliothèque pour réaliser des graphiques en 2D de qualité publication, dans une variété de formats de papier et d’environnements interactifs sur différentes plates‐formes. Matplotlib peut être utilisé dans les scripts Python, les interpréteurs de commandes Python et IPython, les carnets Jupyter et les serveurs d’applications Web.

Matplotlib essaie de rendre les choses faciles et les choses difficiles possibles. Il vous aide à produire des graphiques, des histogrammes, des spectres de puissance, des diagrammes à barres, des diagrammes d’erreurs, des diagrammes de dispersion. Pour des exemples, voir ceux de la galerie.

Les graphiques qui sont présentés dans cet article ont été réalisés avec Matplotlib.

Statsmodels

statsmodels est un module Python qui fournit des classes et des fonctions pour réaliser les estimations issues de nombreux modèles statistiques (comme ANOVA ou MANOVA, par exemple), faire des tests statistiques et explorer des données statistiques. Une liste exhaustive de statistiques sur les résultats est disponible pour chaque estimateur. Les résultats sont testés par rapport aux progiciels statistiques existants pour s’assurer qu’ils sont corrects.

Numpy

Numpy est la bibliothèque de référence pour le calcul numérique en Python. La plupart des projets scientifiques s’appuient dessus et de nombreuses bibliothèques sont compatibles avec ce projet.

La bibliothèque Numpy sert à résoudre deux problèmes principaux :

	stocker « en mémoire » et accéder à des données structurées en tableaux ;

	effectuer des opérations algébriques de base sur ces données.

Pour ce faire, Numpy propose un type np.ndarray pour représenter des tableaux de données multidimensionnelles. Ces données sont accessibles facilement par indexation ou par tranches :

>>> import numpy as np
>>>
>>> data = np.array([[1, 2, 3],
... [4, 5, 6]])
>>> print(data[0, :]) # première ligne
array([1, 2, 3])
>>> print(data[:, 1]) # deuxième colonne
array([2, 5])
>>> data[:, [1, 0]] # réindexation des colonnes
array([[2, 1],
 [5, 4]])

Une multitude d’opérations de base sont disponibles : addition, produit, transposition, etc. Leur implémentation est souvent extrêmement efficace afin de minimiser le temps de calcul et l’empreinte en mémoire. L’efficacité de ces opérations repose en grande partie sur le fait que les données à traiter sont d’un type prédéfini (ex. : entier int32 ou flottant float64) et stockées de manière contiguë, ce qui permet d’optimiser les boucles d’opérations et d’utiliser des instructions vectorisées. Le code critique est d’ailleurs rarement écrit en Python : des bibliothèques de liaison (bindings) vers des bibliothèques écrites en C, Fortran ou assembleur sont souvent utilisées (openblas, intel-mkl).

Tout en étant assez étoffée en termes de fonctionnalités, l’interface de programmation reste plutôt simple et idiomatique, ce qui permet d’avoir un code compact et facile à comprendre. On notera en particulier la surcharge des opérateurs sur les objets np.ndarray qui donne ainsi accès à l’addition, la soustraction, ou le produit terme à terme en respectant les conventions d’usage sur l’expansion des dimensions :

>>> data + np.array([[-1, -2, -3]]) + 1
array([[1, 1, 1],
 [4, 4, 4]])

Les autres opérations sont implémentées par une multitude de fonctions assez bien documentées dans l’ensemble, même si l’aspect didactique est légèrement moins soigné que pour Matlab.

Le champ d’application de Numpy se limite néanmoins aux opérations mathématiques élémentaires : on n’y trouvera donc pas de traitement du signal comme les convolutions 2D ou le filtrage ou la gestion du stockage des données sur disque, qui reste minimale.

Ce sont d’autres modules qui apportent ces fonctions supplémentaires, avec notamment une série de modules scikit-* développés en étroite collaboration avec NumPy : scikit-image, scikit-video, scikit-learn…

Des compilateurs pour accélérer les traitements

Python reste un langage interprété dont la conception ne favorise pas particulièrement la performance à l’exécution, en tout cas avec l’interpréteur standard CPython.

Ainsi, les traitements des données avec des boucles for et des embranchements if … then … else ne sont pas particulièrement rapides. Les possibilités de traitement parallèle sont par ailleurs assez faibles en raison de l’utilisation d’un verrou global pour se protéger des erreurs d’accès concurrent.

Il est donc parfois nécessaire d’aller plus loin dans la recherche de la performance que ce que NumPy propose par défaut. Considérons par exemple le code suivant :

def np_cos_norm(a, b):
 val = np.sum(1. - np.cos(a-b))
 return np.sqrt(val / 2. / a.shape[0])

Il peut encore être accéléré en utilisant un des compilateurs pour Python (scientifique) qui existe. Chacun de ces compilateurs permet un gain plus ou moins grand en performance, et demande une modification plus ou moins intrusive du code, tout en imposant des contraintes de déploiement plus ou moins fortes.

Cython

Le code précédent s’écrirait en Cython :

cython: boundscheck = False
cython: wraparound = False
cython: cdivision = True

cimport numpy as np
from libc.math cimport cos, sqrt

def np_cos_norm(np.ndarray[double, ndim=1] a, np.ndarray[double, ndim=1] b):
 cdef unsigned i, n
 cdef double val = 0., res

 n = a.shape[0]
 for i in range(n):
 val += 1. - cos(a[i]-b[i])

 res = sqrt(val / 2. / n)
 return res

Cython se charge de traduire ce code en C, avec la possibilité (vérifiable avec le mode cython -a) de donner assez d’information au compilateur pour que les parties gourmandes en calcul ne fassent aucun appel à l’environnement d’exécution C. Ce code C est ensuite compilable en un module dynamique classique.

D’un point de vue langage, on notera les commentaires en début de fichier qui permettent au compilateur de faire des hypothèses supplémentaires lors de la génération de code. Plusieurs mots clefs (cdef, cimport…) viennent étendre le langage et indiquer au compilateur les identifiants appartenant au monde natif et celles (les autres) appartenant au monde interprété.

Numba

Le code précédent s’écrirait en Numba :

from numba import jit

@jit
def np_cos_norm(a, b):

 n = a.shape[0]
 for i in range(n):
 val += 1. - cos(a[i]-b[i])

 return sqrt(val / 2. / n)

Numba va dériver à l’execution une version statique de cette fonction, la compiler à la volée et utiliser le noyau généré en lieu et place de la fonction d’origine.

La compilation en code natif repose sur LLVM, et des options peuvent être passées au compilateur à travers des arguments du décorateur, p. ex. @jit(nopython=True) pour déclencher une erreur si la traduction en code natif ne faisant pas référence à l’API Python a échoué. Un cache évite de relancer cette compilation à chaque appel.

Pythran

Le code précédent s’écrirait en Pythran :

pythran export np_cos_norm(float64[], float64[])
def np_cos_norm(a, b):
 val = np.sum(1. - np.cos(a-b))
 return np.sqrt(val / 2. / a.shape[0])

Le compilateur Pythran va traduire ce code en un module natif avec la garantie qu’aucun appel interprété ne sera fait pour exécuter le corps de la fonction np_cos_norm.

La compilation se fait en avance de phase à travers pythran mon_module.py. Il est possible de contrôler finement le processus de compilation en passant des drapeaux de compilations spécifiques : -Ofast, -march=native, voire de générer du code SIMD avec -DUSE_XSIMD.

Les logiciels à base de graphes de calculs : Tensorflow, Pytorch, etc.

Conçus à l’origine pour faciliter le travail sur les réseaux de neurones, il serait dommage de sous‐estimer les autres usages possibles des bibliothèques Tensorflow ou PyTorch et anciennement Theano.

Ces bibliothèques permettent de définir des algorithmes sous la forme d’un graphe d’opérations symboliques défini très naturellement. L’exemple ci‐dessous démontre qu’il s’agit quasiment du même code qu’avec Numpy. Ce graphe est ensuite optimisé puis compilé pour une exécution rapide sur processeur central ou graphique.

Les moyens importants alloués au développement de ces projets assurent un excellent support, un haut niveau d’optimisation et une documentation d’assez bonne qualité complétée par d’innombrables tutoriels.

def tf_cos_norm(a, b):
 val = tf.reduce_sum(1. - tf.cos(a-b))
 return tf.sqrt(val / 2. / tf.cast(a.shape[0], 'float32'))

a = tf.placeholder(dtype='float32', shape=[4])
b = tf.placeholder(dtype='float32', shape=[4])
y = tf_cos_norm(a, b) # résultat symbolique

with tf.Session() as sess:
 y_eval = sess.run(
 y,
 feed_dict={
 a: [1, 2, 3, 4],
 b: [4, 3, 2, 1]
 })

Accessoirement, si l’on peut dire, ces logiciels offrent la différentiation automatique, c’est‐à‐dire que pour un graphe de calculs donné, on peut réclamer la dérivée d’une grandeur à l’un des nœuds en fonction d’une autre.

Aller plus loin

	
Pandas 0.24.0 est sorti
(123 clics)

	
Matplotlib pour les représentations visuelles
(110 clics)

	
SciPy, Python pour les sciences
(100 clics)

	
Statsmodels, pour les statistiques
(105 clics)

	
Jupyter pour expérimenter et partager
(114 clics)

	
Seaborn, pour faire de jolis graphiques
(169 clics)

	
Numpy, pour les tableaux
(120 clics)

	
Scikit learn, pour le marchine learning
(90 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/d15c9e23733d048164d06fcc908d9eb9beebaa3548a98053977702a3.png
In [22]: plot_taylor_approximations(sin, 0, [2, 4, 61, (0, 24pi), (-2,2))

20

15

10

05

[

05

10

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/f902eccd1426c1d0ba8f97a486e336e662c4b187fc01d526866adf44.png
1

[C8

data.head()

e

COUP DE FOUDRE A
JAPUR

COUP DE FOUDREA
JAPUR

COUP DE FOUDRE A
JAPUR

COUP DE FOUDREA
JAPUR

4 NADIA

realsateur

ARNAULD
MERCADIER

ARNAULD
MERCADIER

ARNAULD
MERCADIER

ARNAULD
MERCADIER

LeAmAzER

aresse

RUE ROCHER/DE MADRID ET
PORTALIS

PLACE HENRI BERGSON

PLACE SANT AUGUSTIN

12 PLACE SAINT AUGUSTIN

2 RUE DU RENDEZ VOUS.

organisme_demandeur type_de. tournage

816 BAND STORY

816 BAND STORY

816 BAND STORY

816 BAND STORY

MURMURES
PRODUCTIONS

TeLEALM

TELERLM

TeLEALM

TELERLM

TeLEALM

aa

75008

75008

75008

7508

012

aae_geput

260331
260331

oo
260331

260412

ate fin

260331

260331

260331

260331

260412

g7,
210788

Ang75005,
210072

nsasons,
2400847

EPUB/imagessections41.png
python

powered

EPUB/f4ce154249eed891568a0bbdfac0ee4d4026167dfd794c42a7af8387.png
71

datal realizateur].descrive()

unique 207
<op s0rTva cHopRa
freq 101

Name: realisateur, dtype: object

