

Pythran 0.6 - compilation de noyaux scientifiques écrits en Python

Posté par serge_sans_paille (site web personnel) le 06 novembre 2014 à 15:28.
Édité par ZeroHeure, Benoît Sibaud, palm123 et tuiu pol.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	pythran

	python

	compilateur

	benchmark

	fortran

	numpy

	numba

[image: Python]

Pythran est un compilateur pour les noyaux de calcul scientifique écrit en Python. Il permet d'écrire des modules dans un large sous-ensemble de Python + Numpy, d'ajouter quelques lignes de commentaire pour spécifier les types des fonctions exportées, enfin de compiler l'ensemble pour obtenir un module natif capable (parfois !) d'utiliser efficacement multi-cœurs et unités vectorielles. Le reste de la dépêche décrit le fonctionnement du compilateur, les évolutions récentes et propose une comparaison avec les alternatives : Cython, numba et parakeet.

Sommaire

	Exemple d'utilisation de Pythran

	Fonctionnement interne de Pythran

	Performance du code généré

	Nouveauté dans la version 0.6

	La suite ?

Exemple d'utilisation de Pythran

Prenons un petit code de calcul classique, extrait de la suite de validation de parakeet

import numpy as np
def harris(I):
 m,n = I.shape
 dx = (I[1:, :] - I[:m-1, :])[:, 1:]
 dy = (I[:, 1:] - I[:, :n-1])[1:, :]

 #
 # At each point we build a matrix
 # of derivative products
 # M =
 # | A = dx^2 C = dx * dy |
 # | C = dy * dx B = dy * dy |
 #
 # and the score at that point is:
 # det(M) - k*trace(M)^2
 #
 A = dx * dx
 B = dy * dy
 C = dx * dy
 tr = A + B
 det = A * B - C * C
 k = 0.05
 return det - k * tr * tr

C'est un bon exemple de code scientifique écrit en Python : c'est du haut niveau, on travaille pas mal sur les tableaux (à la FORTRAN ;-)). Le code est un peu polymorphique (la fonction marche sur des tableaux de float ou de double par exemple), mais il y a un contrat implicite (sur la dimension de I). On attend généralement d'un bon développeur Python + Numpy qu'il écrive - quand c'est possible et que cela reste lisible - du code de haut niveau qui aurait cette forme.

Pour compiler ce code avec Pythran, trois choses à faire :

1. le mettre dans un fichier / module à part, disons speedy.py, éventuellement avec d'autres fonctions compatibles avec Pythran. Gageons que cela permette de séparer la partie calcul du reste de l'application (<< oui, ceci est une tentative maladroite de justifier une contrainte imposée par Pythran !) ;

2. ajouter une ou plusieurs lignes pour informer Pythran des versions de cette fonction à générer, par exemple :

#pythran export harris(float64[][])
#pythran export harris(float32[][])

3. compiler le module en module natif :

$ pythran speedy.py

cette ligne aura pour effet de générer un module natif speedy.so que l'on peut importer comme un module « normal »

from speedy import harris

Fonctionnement interne de Pythran

Pythran est un compilateur statique, par opposition à un compilateur faisant de la compilation à la volée, ce qu'on trouve majoritairement dans le monde des langages interprétés (voir par exemple PyPy, Pyston, mais numba et parakeet comptent aussi). Cython est lui aussi un compilateur statique. Le prix à payer est une petite ligne pour déclarer le type de la fonction exportée (mais pas des fonctions intermédiaires!), on peut espérer y gagner en temps d'exécution (on a plus de temps pour compiler, donc on peut se permettre des analyses / optimisations plus coûteuses), même si on dispose de moins d'informations (aucune information de contexte sur la valeur des paramètres).

Une séance de compilation (c'est un peu la séance de massage du .py ;-)) se déroule ainsi :

	Transformation du .py en un Arbre syntaxique abstrait (AST) en utilisant le module standard ast ;

	Vérification des contraintes de Pythran (pas d'eval !) et simplification de l'AST en une Représentation Interne (IR) qui reste proche de l'AST;

	Analyses de l'IR (par exemple fonctions pures, use-def chains, cfg, etc.) et optimisations (indépendantes du type) de l'IR, par exemple propagation de constantes interprocédurales, élimination de code mort, forward substitution, passage en évaluation paresseuse

	Génération de code, soit du Python, dans ce cas Pythran n'a pas besoin des annotations d'export de fonction et on s'arrête à cette étape, soit du C++, dans ce cas un Méta-programme (comprendre : une soupe de template) est généré et on passe à l'étape suivante.

	Instanciation du méta-programme à l'aide des annotations d'export de fonction par le compilateur C++ de votre choix. Cette étape repose sur la présence d'une bibliothèque, pythonic basée sur NT2, qui fournit des conteneurs et des opérations optimisées pour la calcul scientifique. Certaines optimisations ont lieu à ce moment (Expression templates mes amours).

Performance du code généré

Il est toujours difficile (et bien souvent biaisé) de sortir des courbes de performance et de se comparer aux autres. Prenons le cas de la fonction harris. Elle vient de la suite de validation de parakeet, donc au moins, elle n'est pas biaisée en notre faveur ;-)

Pour mesurer les perfs, j'utilise le très standard module timeit. Bon en fait je l'ai monkey patch pour qu'il me donne aussi l'écart type, mais ça a peu d'importance. Donc :

~~&xx000A;$~~
python -m timeit -s 'from harris import harris; import numpy as np ; a = np.random.randn(512, 512)' 'harris(a)'

Pour du code Python (2.7, désolé, numpy 1.8.2), j'obtiens ça (les temps sont en nanosecondes, c'est ce que sort timeit):

bench engine min average dev
----- ------ --- ------- ---
harris Python 5441 5471 25

En compilant avec Pythran, sans options particulières et en utilisant GCC (4.9) comme backend, on a grosso modo un facteur d'accélération de deux, qui correspond principalement à la suppression des tableaux intermédiaires :

bench engine min average dev
----- ------ --- ------- ---
harris pythran 2512 2644 150

Cela correspond à peu près aux temps obtenus par parakeet (0.24):

bench engine min average dev
----- ------ --- ------- ---
harris parakeet 2919 2939 18

numba (0.15.1) est hors course, mais le code de haut niveau, ce n'est pas trop son truc, il préfère les boucles :

bench engine min average dev
----- ------ --- ------- ---
harris numba 6420 6435 10

On peut s'amuser à utiliser Clang (3.5) au lieu de GCC (4.9) comme backend, dans ce cas on obtient:

bench engine min average dev
----- ------ --- ------- ---
harris pythran-clang 2563 2695 144

c'est-à-dire pas de grosse différence.

Pas de benchmark Cython, parce qu'utiliser Cython, ça veut dire réécrire son code, que c'est berk et que je n'ai pas envie de benchmarker ma (mé)connaissance de leur sous-langage.

Pour faciliter nos développement, j'ai regroupé des benchmarks glanés ici et là sur un dépôt https://github.com/serge-sans-paille/numpy-benchmarks avec deux trois outils pour collecter les temps et les formater. Je ne vais pas me lancer dans l'exercice périlleux de leur interprétation, mais voilà une sortie qui donnera peut-être lieu à des commentaires intéressants !

Les temps sont ceux sortis par timeit en nanosecondes (c'est des moyennes hein), 0 veut juste dire que le compilateur a échoué à compiler le code. Ni vectorisation ni parallélisation là dedans ;-)

 Python numba parakeet pythran pythran-clang
 allpairs_distances 37601 0 1752 *1718* 1763
allpairs_distances_loops 50650 55759 2611 1757 *1671*
 arc_distance 1377 1373 1444 855 *816*
 conv 1947702 2596320 *1805* 1868 1886
 create_grid *3788* 3895 0 3836 4059
 cronbach 1702 1642 0 *1479* 1782
 diffusion 22597 23201 14684 4913 *4153*
 evolve 5958 0 0 3887 *3408*
 fdtd 1571130 2028434 0 *1184* 2802
 fft 24023 0 0 *813* 1138
 grouping 2117 0 0 836 *785*
 growcut 1799480 4123 *2114* 3861 5545
 harris 5471 6435 2939 *2644* 2695
 hasting 9 10 61 *1* *1*
 hyantes 258354 294639 1863 *1707* 1920
 julia 2678910 2801 *49* 2465 2498
 l2norm 5807 5753 12221 *876* 881
 local_maxima 57142 0 0 5198 *1299*
 lstsqr 7544 6851 0 2305 *2282*
 mandel 443242 *4581* 0 5153 5758
 multiple_sum 2999 3132 7640 1673 *1254*
 pairwise 3937063 5665 *3397* 3471 3424
 periodic_dist 1779 1870 0 *1002* 1136
 repeating 1245 1282 0 659 *560*
 reverse_cumsum 2636 2642 0 *2370* 2372
 rosen 14192 12891 1522 1446 *1232*
 slowparts 5606 0 *983* 2470 2507
 smoothing 982609 4878 6266 4866 *3146*
 specialconvolve 8171 7394 7917 2197 *1373*
 vibr_energy 2584 2557 2282 *1192* 1494
 wave 52355 51844 0 *1078* 1239
 wdist 82199 91824 2456 1536 *1364*

Nouveauté dans la version 0.6

Pour les courageux, d'après le Changelog, que je vous traduis pour l'occasion :

	Support complet de la vectorisation. Toutes les expressions numpy sont vectorisées (AVX/SSE) grâce à Boost.SIMD !

	Meilleure gestion de la mémoire à la frontière entre Python et C++

	Support des appels par paramètres nommés (e.g. np.zeros(10, dtype=np.int32))

	Meilleur support des nombres complexes

	Beaucoup de nettoyage de code

	Génération de code plus efficace pour les boucles explicites

	Paquet ArchLinux, guide d'installation sur MacOS

	Validation par Travis, qui valide en mode séquentiel, vectoriel et parallèle !

	Améliorations des performances pour les expressions Numpy

	Utilisation de memcpy pour les copies de tableaux / sous-tableaux dès que possible

	Propagation de constante bien plus efficace

	Possibilité de compiler du code Pythran à travers distutils

	Plus de fonctions numpy supportées, et amélioration de l'existant

	Forward substitution de meilleur qualité

	Passage à la nouvelle version de NT2

	Dépendance sur libgomp maintenant optionnelle

La suite ?

Il commence à y avoir une petite communauté d'utilisateurs, c'est très agréable d'avoir des retours (même si ce sont souvent des retours de bugs), voir des demandes d'améliorations ! Passez faire un coucou sur l'IRC (FreeNode, #pythran) si ça vous tente de contribuer ;-)

Aller plus loin

	
Site du projet
(208 clics)

	
Code source
(52 clics)

	
Chez le fromager
(68 clics)

	
Présentation récente
(51 clics)

	
Le tag pythran sur LinuxFR
(58 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

