

pyvmidbg : un débogueur full‐system basé sur l’introspection de machine virtuelle

Posté par Wenzel (site web personnel) le 30 mars 2019 à 13:48.
Édité par ZeroHeure, Xavier Teyssier, Davy Defaud, Benoît Sibaud et palm123.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	debugging

	hyperviseur

	introspection

	fosdem

[image: Virtualisation]

Voici un projet qui me (Wenzel) tient à cœur : pyvmidbg.

Le but est assez simple : se donner la capacité de déboguer l’état complet d’un système d’exploitation, tournant dans une machine virtuelle, en utilisant uniquement l’hyperviseur et l’accès au matériel par la machine virtuelle.

L’idée en elle‐même a commencé à germer lorsque je travaillais sur des outils d’analyse de logiciels malveillants (malware) basés sur l’hyperviseur, et, voyant leur efficacité pour l’analyse automatisée, j’ai petit à petit creusé pour transposer ces concepts afin d’aboutir à de puissants débogueurs interactifs.

Intérêt

Problématiques

L’intérêt d’un tel outil ? Au‐delà du besoin évident pour des analystes en sécurité d’analyser furtivement des logiciels malveillants avancés, on peut trouver d’autres problèmes plus généraux liés aux API de débogage des systèmes d’exploitation :

	la visibilité (l’effet d’observateur), qui va potentiellement changer l’environnement du programme ; par exemple, certains appels système auront un comportement différent ;

	cet effet d’observateur peut parfois être volontaire, dans une tentative de protection de la propriété intellectuelle de certains systèmes d’exploitation ;

	les nouvelles fonctionnalités de sécurité des systèmes d’exploitation modernes posent des soucis de compatibilité avec la visibilité et le contrôle total que demandent les débogueurs.

Avantages

Déboguer depuis l’hyperviseur apporte aussi des bénéfices non négligeables :

	en virtualisant le démarrage depuis un hyperviseur chargé sur une clef USB, il est possible d’analyser dans une machine virtuelle l’ensemble de la séquence de démarrage d’un système d’exploitation, et ce depuis le micrologiciel BIOS/UEFI ;

	les unikernels, images noyau embarquant une seule application, sont dépouillés d’un maximum de fonctionnalités pour être minimaux et rapides ; le stub de débogage est également supprimé, laissant à l’API de l’hyperviseur les seuls moyens d’accès pour un unikernel en production ;

	l’unification des outils de débogage : en rebasant nos débogueurs sur l’hyperviseur, il nous sera possible d’utiliser le même outil pour déboguer et suivre des processus, de l’espace utilisateur au noyau, et ce, sur tous les systèmes d’exploitation !

Débogage full‐system

Afin de résoudre ces problématiques et implémenter une solution pérenne, j’aimerais vous présenter la vision que j’ai de nos futurs outils de débogage, travaillant en mode full‐system :

[image: pyvmidbg]

	les multiples stubs de débogage implémentent les protocoles standards pour gérer tous les frontaux ;

	les stubs possèdent une connaissance du système invité, c’est‐à‐dire qu’ils sont capables de suivre et d’intercepter l’exécution d’un processus cible dans la machine virtuelle ;

	la LibVMI permet de faire le lien avec les différentes API de VMI (Virtual Machine Introspection) des hyperviseurs cibles.

Démo

Comme une démo vaudra mieux que mille mots, je vous propose cette petite vidéo que j’ai enregistrée pour la conférence Insomni’Hack qui se tenait la semaine dernière à Genève.

Dans celle‐ci, avec une machine virtuelle Windows XP imbriquée, je montre comment :

	intercepter l’exécution de cmd.exe ;

	se connecter au stub en utilisant radare2 ;

	mettre en place deux points d’arrêt, en espace utilisateur sur ntdll!NtOpenFile, puis en espace noyau sur nt!NtOpenFile ;

	suivre des événements liés à ces points d’arrêt dans le stub, en ignorant les autres processus pour ne renvoyer de résultat que pour cmd.exe.

Pour aller plus loin, je vous ai également mis le lien vers la présentation.

Quel est votre avis concernant nos outils de débogages actuels ? J’aimerais avoir vos retours !

Je cherche à présent à implémenter la prise en charge de GNU/Linux, et à comprendre comment l’état des fils d’exécution (threads) est sauvé et restauré, et comment l’ordonnanceur passe de l’un à l’autre.

Vous êtes curieux ou souhaitez participer ? Nous avons un Slack !

Dans l’espoir de vous présenter une meilleure version au FOSDEM 2020. :)

Merci à vous !

Aller plus loin

	
Code source sur GitHub
(193 clics)

	
Démo en vidéo : débogage sur Windows XP
(86 clics)

	
Présentation à la conférence « Insomni’Hack » à Genève
(69 clics)

	
Slack de pyvmidbg
(41 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/f05fb5340bd9413d2476fab8d4cbb9a3ed8eef32bdf8ff0ec1970aa7.jpg
Hypervisors

Debug Frontends

VirtualBox
VMware
Hyper-v

WinDBG

Visual Studio

EPUB/imagessections74.png
0]

