

Requêtes et jointures avec pgModeler (PostgreSQL)

Posté par Maxzor le 29 janvier 2020 à 15:09.
Édité par BAud, Davy Defaud, Ysabeau 🧶, ZeroHeure, Benoît Sibaud et claudex.
Modéré par claudex.
Licence CC By‑SA.

Étiquettes :

	requête

	sql

	nlidb

	pgmodeler

	base_de_données

	modélisation

	postgresql

[image: Base de données]

Bon, voilà, j’ai développé ce greffon pour pgModeler (C++/Qt), et j’ai envie de le partager dans une petite dépêche.

Mes motivations principales étaient de pouvoir effectuer des requêtes dans mon logiciel de modélisation préféré, bien entendu, et le fait que les logiciels de modélisation que je connais ne prennent pas en charge les jointures existantes ou automatiques.

Votre client SQL est cool ? Mais est‑il cool à ce point ?! :)

Rapide présentation de pgModeler

pgModeler est un logiciel de modélisation de base de données. Bien que plutôt généraliste — si l’on s’en tient à un modèle logique des données — il est spécialisé PostgreSQL. Il permet entre autres de :

	construire par interface graphique un modèle de base de données (tables, schémas, rôles…), mais bien plus ; en fait, il propose toutes les fonctionnalités offertes par PostgreSQL, allant jusqu’aux extensions PostGIS ;

	créer une base de données à partir d’un modèle : passer de la représentation à l’implémentation ;

	à l’inverse, créer un modèle à partir d’une base de données ;

	comparer une instance PostgreSQL avec un modèle et produire — voire réintégrer — les différences entre schémas ;

	administrer sa base, avec un module riche, mais qui n’égalera sans doute pas pgAdmin ;

	produire un dictionnaire des données.

Des discussions sont en cours pour rendre pgModeler nativement compatible avec les autres systèmes de gestion de bases de données relationnelles (SGBDR) grâce à l’excellent extracto‑chargeur (ETL) pgLoader.

Présentation du requêteur graphique

Le requêteur graphique est un greffon pour pgModeler. La sortie officielle de ce greffon coïncide avec celle de la version 0.9.2 stable de pgModeler : c’est l’occasion de rappeler ces liens vers l’annonce officielle et la liste des changements.

Le requêteur graphique consiste en deux modules :

	le cœur, qui permet de construire des requêtes SQL à partir des entités graphiques du modèle – tables, colonnes et relations :
[image: Cœur]

	le moteur d’inférence de jointures, qui, à partir de tables dans la clause select, propose une liste de jointures complètes possibles, classées par coût total :
[image: Moteur d’inférence]

Alors que le cœur est très classique et n’apporte pas grand‑chose par rapport aux requêteurs graphiques de Microsoft Access, SQL Server Management Studio, pgAdmin 3 ou autres Active Query Builder d’Active Database Software… La partie solveur de jointures est plus intéressante et nous allons nous y attarder un peu ici.

Solveur de jointures

Une vidéo de présentation (en anglais) tout aussi complète que la section suivante est disponible ici. Le fichier README de GitHub (en anglais aussi) est aussi équivalent. La vidéo comporte en plus une partie guide d’utilisation.

Fonctionnement

Le solveur de jointures reçoit comme entrée un ensemble de tables à relier, et produit une liste de chemins valides, c’est‑à‑dire différentes façons de joindre ces tables. La liste des chemins potentiels est triée par coût ascendant. Il y a une pondération par défaut, et il est possible de personnaliser celle‑ci dans le menu paramètres du solveur.

Pendant la marche du solveur, un rapport d’avancement est affiché, et l’on peut arrêter le solveur s’il prend trop de temps. Il est aussi possible d’afficher en temps réel les tables inspectées (c’est le deuxième GIF du README du dépôt du greffon) et d’en apprendre plus sur l’algorithme. Parlons algorithmes justement !

Algorithmes

Ce greffon fait appel à différents algorithmes de graphes relativement simples. Pour le mode manuel (sans solveur), la construction de la requête a recours à un tri topologique, qui repose sur une implémentation du parcours en profondeur.

Pour le mode automatique (l’inférence), d’autres algorithmes entrent en jeu via les bibliothèques Boost et Paal :

	une découverte des tables connectées (via DFS) ;

	une recherche sur les arbres de Steiner dans le cas de trois tables ou plus à joindre ;

	un parcours des chemins les plus courts, via l’algorithme de Dijkstra notamment ;

	un tri topologique pour finir, comme dans le cas manuel.

Quelques bases algorithmiques sont posées, on peut pour la suite envisager des choses bien plus intéressantes ! Je pense aux réseaux de flot et au théorème flot‑max/coupe‑min pour les EXPLAIN ANALYZE, par exemple.

Bilan

Le solveur a plus un statut expérimental — c’était une stimulation intellectuelle sympathique dans sa conception — que celui d’une fonctionnalité mature et éprouvée. L’algorithmique est plus que perfectible. Mais c’est surtout son intérêt qui reste à valider, et vos retours sont les bienvenus :

	dans les modèles simples, la valeur ajoutée par rapport au mode manuel n’est pas énorme ;

	dans les modèles complexes, le nombre de résultats renvoyés par le solveur, surtout sans paramétrage personnalisé, peut devenir désarmant.

Une fonctionnalité qui pourrait aider pour ce dernier type de modèle est celle des calques multidimensionnels. Ces calques contournent la limitation historique des bases de données relationnelles « table n − 1 schéma » pour en faire « table n − n calque ». Cela permettrait de stocker des états fonctionnels, des catégories de traitements ou de requêtes, dans un ensemble visuel, etc., pour restreindre une exécution du solveur à un tel ensemble.

Conclusion

L’objectif initial de ce greffon était de ne plus avoir à se fader des select débiles. S’il peut servir à d’autres personnes, c’est bien… Et si les écoles pouvaient remplacer leurs Microsoft Access dégueulasses par pgModeler dans leurs cours de conception de bases de données, ça serait le rêve. :D

Ce greffon est en version plus ou moins bêta : il ne devrait plus planter grossièrement, mais de nombreuses corrections mineures et plus importantes restent à faire. Une liste des améliorations envisagées est disponible ici, à vos claviers !

Au moment de la publication de cette dépêche [28 janvier 2020], le requêteur est sur le point d’être intégré au dépôt officiel, mais ce n’est pas encore fait, il n’est donc pas encore distribué (binaires payants sur le site officiel, encore moins dans les dépôts des distributions). Je vous suggère pour compiler d’utiliser la branche 0.9.3‑alpha de pgModeler et la branche master de ma divergence des greffons.

Aller plus loin

	
Site officiel de pgModeler
(609 clics)

	
Dépôt GitHub de pgModeler
(103 clics)

	
Dépôt GitHub du greffon de requêtage graphique
(123 clics)

	
Cui‑cui officiel
(80 clics)

	
Reddit
(49 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/81940f1bee04996b7a8747c74781f25934bdcb49a5ad0a1bfb81516f.jpg
PgModeler - PostgresQL Database Modeler 0.9.3-alpha - /home/maxzor/.config/pgmodeler/tmp/model_ErjoYF.dbm - & x

File Edit Show Plugins Help

EIBDRGA®E|ARAGE:H G R Z |« P [newdstabase AR 3N XX
L “ | Graphical query builder : join path x
Welcome
$ L. k+1 St r trees | Dreyfus-
Design
Permutation round : 3
k
st
Steiner points found : 4
Permutations tried : 16 16 (274)
Steiner trees found : 5 /5

2
< Il k+1 shortest paths
Settings
i Super-edge : 15 /17
&5
{} ol | Sub-paths found : 4
i [E——
Quick ok
>

< v

n | 4 Insert selection || 7}ShowSQL ||*, Reset || % Selectall || Joinpath | x

5 5 5 7 Steiner tree : d

= % Select v v v v

More (& Schema public public public public Candidate full path : /
" Table / View |19 6 12 9
= [0%
© Column . : * o
~ Alias Full paths found :
“ Where
% Group by | @ stopsolver |
T Having
(S Ordes by [Man | Aveo | | £y (@) |5 |

(2 Validation || -, Find objects | == Layers || i:- Query builder % 123,986 O, 70% Sel objects:4 7 (22,53) [| & Objects | |#% Operations

EPUB/0e6e2929d7b5327345748865070f56cae332b58d4b66870ef5d44315.jpg
File Edit Show Plugins

PgModeler - PostgresQL Database Modeler 0.9.3-alpha - /home/maxzor/pgmr/pgm_rfx9_a2v_schemas/vizualization/preparation.dbm

Help

> varying(10)
> a

X

Settings

hiolcup

<

character varying(3)
character varying(30)

«nn »|

taitdo «nn »|

O t0i3ep character varying(3)
© tosepp _smallint

(= gocact character varying(3)
(gocetp character varying(3)
ot haractar uandnal2)

ST RGO
(~t0ctep character varying(3) < pk>| |t gocdpo character varying(3) O trrtpr_character varying(15) _«n >,
(= t0cepp character varying(3) « pk>| > 2

© tartdo

= ggcdpo
- gqcact
= gqcetp

= gactpr

SELECT hipldlp.pinann,
hipldip p1nanp,
hiprenp penann,
hiprenp pecfpr

FROM v_preparation.hipldlp

JOIN v_preparation iprolp
‘N hipldlp.p icoct=hlprplp.pcact
AND hipldip p1cdpc=hlprplp.p1¢dpo
AND hipldip 5 Tnan=hlprplp o nann
AND hipldip p1nlpr=hiprplp.pTnlpr

JOIN v_preparation hiprpkp.

ON picactjicact
AND picdposjicdpo
AND pinanr=jknann
AND pnlprsjknior

JOIN v_preparation hiprenp.
ON hcoct=pecact
AND jkcdpo=pecdpo
AND knann=penann
AND knpre=penpre

GROUP BY 10,
penann

ORDER BY p na7p DESC,
penann ASC

hipldip

| 4 Insert selection | |/7}Show SQL | %, Reset || % Selectall

| Schema-qualified |

Display : | Aerated

Join-in-where

¥

= ggembg

hipalcp

alnpr

Manage |RysavesqL |

1 2 3, ogViadslsr
* Select v v v
e
(&Schema |v_preparation v_preparation v_preparation v_preparation
~Table / View |hipldip hipldlp hiprenp hiprenp
© Column |pinann pinanp penann pecfpr
= Alias
. Where
“ Group by Vv v
7 Having
21 Order by ~ |pesc - |[1]z]asc ~|[2]z] -

(- validation |

|, Find objects | |&=Layers || i Query builder |

W 1217,1583

2, 100% Sel. objects: 7

character {
character {
character {
character |
character |
B

T (1155, 1161) [w: 1424, h: 246] == Objects | | 4% Operations

GQB Path

EPUB/imagessections64.png

