

Retour sur Django 1.5

Posté par Johan Charpentier (site web personnel) le 05 mai 2013 à 23:24.
Édité par redgriff, Nÿco, Atem18, claudex, RoPP, tuiu pol, Benoît Sibaud, Thomas Debesse et jcr83.
Modéré par tuiu pol.
Licence CC By‑SA.

Étiquettes :

	django

[image: Python]

Le mardi 26 février, 11 mois après la 1.4, est sortie la version 1.5 du framework web Django, écrit en Python. Ce framework, basé sur un concept Modèle-Gabarit-Vue (MGV, à rapprocher du MVC), est conçu pour le développement rapide et reprend la plupart des grands principes de Python (« Explicit is better than implicit », notamment), ce qui en fait la plate-forme de développement Web idéale pour les perfectionnistes sous pression.

De plus en plus de sites utilisent Django (par exemple, 20minutes, Libération.fr, Disqus, Century21, Convore, Instagram, Threadless…) pour sa flexibilité et pour le nombre d’applications Django réutilisables, qui ne cesse de croître. Je vous propose de découvrir les quelques nouveautés que vous offrent les développeurs Django et toute la communauté.

NdM : le 28 mars la version 1.5.1 de Django est sortie. Il s'agit d'une version de maintenance corrigeant quelques bogues mineurs et un problème de fuite de mémoire introduit par la version 1.5.

Sommaire

	
Notes de version
	Principales nouveautés

	
Détails
	Modèle User configurable

	Python 3

	Gestion améliorée des streamings responses

	Améliorations de l'ORM

	Améliorations de la documentation

	Template tag {% verbatim %}

	Récupération des instances associées ContentType avec des modèles de proxy

	Autres changements

	Quelques statistiques

	
Modules utiles
	Mezzanine

	Django REST Framework

	south

Notes de version

Principales nouveautés

	Configuration du modèle User

	Compatibilité « expérimentale » avec Python 3

	Meilleure gestion des streaming responses

	Sélection des champs mis à jour lors de la sauvegarde d'un modèle

	Prise en charge de l'enregistrement d'un sous-ensemble des champs du modèle

	Mise en cache des instances liées au modèle

	{% verbatim %} template tag

	Récupération des instances associées ContentType avec des modèles de proxy

	Nouvelle variable view dans le contexte des vues basées sur des classes

	GeoDjango

Détails

Modèle User configurable

Les versions précédentes imposent un modèle d'utilisateur. Ce modèle sert notamment à authentifier les utilisateurs et gérer les permissions. Pour étendre ce modèle il faut définir un autre modèle (nommé profile) qui contient les champs supplémentaires. Cette solution présente plusieurs inconvénients. Une requête SQL supplémentaire ou une jointure est nécessaire pour obtenir les autres champs et il n'est pas possible de modifier le champs username.e

La version 1.5 introduit la prise en charge des modèles utilisateurs configurable (Configurable User model). Il est donc possible de remplacer le modèle par défaut. Plusieurs classes abstraites sont disponibles pour faciliter l'intégration de son modèle avec le reste du framework (gestion des permissions) ou étendre le modèle User existant.

L'utilisation des profiles est toujours prise en charge mais la méthode get_profile du modèle User sera supprimée dans la version 1.7.

Pour ceux qui souhaitent migrer vers ces nouveaux modèles d'utilisateurs, south devrait faciliter la migration de la base de données. Cette question sur Stack Overflow donne quelques pistes.

Python 3

Il y a du changement sur les versions de Python prises en charge. Le support de Python 3 (en version 3.2) est de la partie. Pour le moment ce support est expérimental et certaines fonctionnalités dépendant de bibliothèques externes ne sont pas disponible avec Python 3. De plus, il faudra attendre que les applications les plus populaires soient également compatibles. À noter que la même base de code tourne sous Python 2 et Python 3.

Le support de Python 2.5 est quant à lui passé à la trappe. Cela devrait surtout impacter les utilisateurs de Jython qui peuvent se rabattre sur la version alpha de Jython 2.7 (supportée par Django).

Gestion améliorée des streamings responses

Avant Django 1.5, il était possible de créer des réponses de type « streaming » en passant un itérateur au constructeur HttpResponse. Malheureusement, ce comportement complique l'écriture des middlewares qui risquent de consommer l'itérateur. Pour palier ce problème, une nouvelle classe (StreamingHttpResponse) est disponible. Les middlewares peuvent dorénavant adapter leur comportement suivant le type des réponses reçues.

Améliorations de l'ORM

Plusieurs nouvelles fonctionnalités peuvent améliorées les performances de l'ORM.

Lors de l'enregistrement d'une instance (méthode .save() en base de données, il est désormais possible de limiter les champs sauvegardés. Cela permet de limiter les risques d'écrasement lors d'accès concurrents. Les instances différées (obtenues via les méthodes .only() et .differ()) limitent automatiquement aux champs pré-chargés et à ceux qui ont été explicitement modifiés.

Lors du parcours des relations, l'ORM évitera de récupérer les objets précédemment chargés. Par exemple, dans l'exemple suivant :

>>> first_poll = Poll.objects.all()[0]
>>> first_choice = first_poll.choice_set.all()[0]
>>> first_choice.poll is first_poll
True

Avec Django 1.5, la troisième ligne n'exécute plus de requête SQL pour récupérer first_choice.poll puisqu'il a été défini par la deuxième ligne. Cette amélioration peut s'avérer très utile en combinaison de la méthode prefetch_related introduite dans Django 1.4.

La suppression d'un ou plusieurs objets est accélérée quand il n'y a ni signaux enregistrés ni suppressions en cascade.

Les modèles peuvent définir des index multi-colonnes.

Améliorations de la documentation

Les djangonautes auront l'agréable surprise de découvrir une nouvelle page d'accueil de la documentation mieux structurée. Plusieurs nouveaux tutoriels ont été écris dont l'un sur l'écriture d'applications réutilisables et un autre sur l'écriture de tests.

Template tag {% verbatim %}

Les templates javascript devenant de plus en plus populaire il fallait une solution pour éviter leur collision avec la syntaxe de template de Django. Vous pouvez maintenant utiliser la balise de bloc verbatim afin d'éviter l'analyse du contenu de la balise.

Récupération des instances associées ContentType avec des modèles de proxy

Les méthodes ContentTypeManager.get_for_model() et ContentTypeManager.get_for_models() ont un nouveau mot-clé comme argument- respectivement for_concrete_model et for_concrete_models. En passant False en utilisant cet argument, il est désormais possible de récupérer le ContentType associé à des modèles de proxy.

Autres changements

	La commande dumpdata retourne les données lignes par ligne pour éviter les congestions de mémoire lors de l'export d'un grand nombre de données

	
LOGIN_URL et LOGIN_REDIRECT_URL accepte désormais les chemins de vues ou les noms de chemin d'URL tels que l'on puisse désormais écrire LOGIN_URL="testapp.mavue"ou LOGIN_URL="mylogin"

	Fini les erreurs bien moches si l'on a oublié d'avoir des templates 404.html ou 500.html : Django affiche désormais des pages génériques pour ces situations si les templates correspondants ne sont pas présents. Les codeurs consciencieux que sont les developeurs Python s'assureront tout de même de que ces templates soient présents.

	Un signal existe si un utilisateur n'a pas réussi a s'authentifier.

	Abandon du module simplejson pour le module standard json

	La commande loaddata possède un argument ignorenonexistent pour ignorer les champs présents dans le fichier qui n'existent plus dans vos modèles

	Possibilité de filtrer par requête dans l'administration

Quelques statistiques

Le projet django a migré de subversion vers git en avril 2012.

Entre la version 1.4 et la version 1.5, il y a eu 13513 commits (git log --no-merges --pretty=oneline 1.4 1.5 | wc -l)

$ git diff --shortstat 1.4 1.5
3758 files changed, 164853 insertions(+), 153265 deletions(-)

Modules utiles

On compense le retard de l'annonce de la sortie de Django en parlant de modules sympas sortis ou ayant une utilité particulière entre la 1.4 et 1.5 :

	Le tueur de Wordpress : Mezzanine (CMS)

	Le destructeur de Piston : Django REST Framework (API)

	L'altérateur de l'Escuelle : South (DB)

Mezzanine

Mezzanine est un Système de gestion de contenu (Content Management System ou CMS) distribué sous licence BSD. Basé sur Django, il se veut être une alternative à Wordpress. Il fournit un CMS complet qui peut être déployé sans écrire une seule ligne de code. Il propose de nombreuses fonctionnalités, telles que :

	navigation hiérarchique

	une interface d'administration complète (édition des pages, gestion des redirections, des médias, des formulaires)

	éditeur WYSISWYG (via TinyMCE, remplaçable par du Markdown)

	moteur de blog

	gestion des tags

	intégration avec plusieurs services externes (Disqus, Gravatar,
Twitter, bit.ly, Askimet…)

	une boutique en ligne Cartridge

	et beaucoup d'autres fonctionnalités

Ces fonctionnalités sont intégrées de manière cohérente. Par exemple, le thème par défaut (basé sur Twitter Bootstrap) active le service de commentaires Disqus si celui-ci est configuré. Si Mezzanine propose un CMS complet, il reste facilement personnalisable. Les templates sont plutôt bien découpés et il est assez simple d'intégrer ses propres modèles de pages.

Mezzanine est un bon choix pour les débutants qui veulent déployer un CMS tout en découvrant Django.

La version 1.4.3 est sortie le 27 février et est compatible avec Django 1.5.

Django REST Framework

Dans ce joli monde des frameworks Javascript la nécéssité de représenter ses modèles via une interface CRUD devient de plus en plus impérative. Plusieurs applications Django existent dans ce sens comme :

	Tastypie

	Django REST Framework

Ce dernier à l'avantage de possèder une syntaxe se rapprochant du système de vues objet naturel de Django Class based views

La jolie n'image présente en page d'accueil du site de Django REST Framework est la représentation en HTML de l'API. Toute requête sur la même url avec par exemple le content-type application/json ou le paramètre format=json l'affichera en JSON.

Pour reprendre l'exemple voici ce que donnerai l'exposition du modèle User de base de Django : Tout d'abord, on configure un serialiseur qui s'occupera de déterminer comment traiter les données :

testapp/serializers.py

from rest_framework import serializers

class UserSerializer(serializers.ModelSerializer):
 class Meta:
 model = User
 fields = ('url', 'username', 'email')

Une vue pour présenter ces données :

testapp/views.py

from django.contrib.auth.models import User
from testapp.serializers import UserSerializer
from rest_framework import generics

class UserList(generics.ListCreateAPIView):
 model = User
 serializer_class = UserSerializer

Et enfin les urls associées :

testapp/urls.py

from django.conf.urls import patterns, url
from rest_framework.urlpatterns import format_suffix_patterns
from testapp import views

urlpatterns = patterns('',
 url(r'^users/$', views.UserList.as_view(), name='user-list'),
 url(r'^users/(?P<pk>[0-9]+)/$', views.UserDetail.as_view(), name='user-detail')
)

Pour jouer avec vous avez un joli bac à sable

south

South est une application qui se révèle rapidement indispensable puisqu'elle apporte la gestion des migrations des bases de données.

La dernière version de south (0.7.6) est en grande partie compatible avec Django 1.5 à l'exception de :

	la prise en charge des index multi-colonnes ticket correspondant

	le changement simple du modèle User (voir cette discussion sur les problèmes à résoudre)

Aller plus loin

	
Notes de version
(150 clics)

	
Annonce de la sortie
(45 clics)

	
Annonce de la sortie de la 1.4 sur LinuxFR.org
(47 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections41.png
python

powered

