

Revue des techniques de programmation en shell

Posté par Michaël (site web personnel) le 22 septembre 2014 à 09:36.
Édité par Benoît Sibaud, Nils Ratusznik, palm123, Nÿco, Yves Bourguignon et Pierre Jarillon.
Modéré par Nils Ratusznik.
Licence CC By‑SA.

Étiquettes :

	programmation

	shell

	script_shell

	ligne_de_commande

[image: Ligne de commande]

L'été est fini, c'est la rentrée ! Pour se remettre en forme, rien de tel qu'une revue des techniques de programmation en shell — ces techniques sont pour le shell de Bourne /bin/sh mais peuvent être utilisées avec les shells compatibles qui permettent parfois des solutions plus faciles.

Sommaire

	Le dernier qui a fait ça chez nous est en train de sécher dans un faux plafond

	

	Les backquotes, backticks ou contr'apostrophes

	La commande echo

	Analyse de la sortie de la commande ls

	Construction de la ligne de commande

	
Programmation structurée
	Exemple du renommage de fichier

	Exemple de l'analyse de contenu de fichier vidéo

	Liste des commandes travaillant avec des données tabulaires

	Introspection

Note: comme ce texte est déjà très long, je propose que ceux qui ont aussi des choses à dire sur ce sujet le fassent dans des dépêches supplémentaires.

Le dernier qui a fait ça chez nous est en train de sécher dans un faux plafond

Si vous souhaitez faire don de votre corps à un taxidermiste, utilisez l'une des techniques suivantes dans votre programme: les backquotes, la commande echo ou bien analysez la sortie de la commande ls.

Les backquotes, backticks ou contr'apostrophes

N'écrivez jamais

candidates=`awk '{print($2)}' /etc/fstab`

mais plutôt

candidates=$(awk '{print($2)}' /etc/fstab)

parce que c'est plus facile à lire, plus facile de présenter correctement une longue fonction, plus facile à emboiter, bref les backquotes sont une technologie obsolète.

À propos, il est souvent plus facile et plus lisible de définir une fonction auxiliaire:

list_mount_points()
{
 awk '
 /^#/||/^$/{next}
 {print($2)}
 ' /etc/fstab
}

candidates=$(list_mount_points)

Quand on a plus de place, c'est plus facile de mieux présenter son code, d'écrire un code plus robuste et le nom de la fonction décrit son rôle.

La commande echo

La fonction echo n'est utile que pour afficher des messages de diagnostic, si la fonction printf est disponible, il faut toujours préférer cette dernière, qui est plus puissante et plus facile à utiliser!

On peut par exemple imprimer des codes de caractère arbitraires:

TAB=$(printf '\t')
CR=$(printf '\015')

et imprimer correctement toutes les variables

attrape_nigaud='Pan!\cPan!'
printf '>>> %s <<<\n' "$attrape_nigaud"
echo "$attrape_nigaud"

L'appel à printf est bien défini mais pas celui à echo qui produit Pan! sous Debian/Jessie mais Pan!\cPan! sous FreeBSD.

Rappelons la définition bien pratique de la fonction eprintf permettant d'écrire sur la sortie d'erreur standard :

eprintf()
{
 >&2 printf "$@"
}

Analyse de la sortie de la commande ls

En bref la règle d'or est que la commande ls sert uniquement pour l'utilisation interactive du shell, dans le cas d'un script shell, on utilise soit le globbing soit la commande find en conjonction avec xargs.

La raison est que la commande ls est inutilisable dès que les fichiers contiennent des caractères exotiques. Il est inutilement difficile d'analyser correctement la sortie de ls et il est tellement facile d'utiliser un globbing:

for file in $(ls); do ← Exemple à ne pas suivre!
 printf '%s\n' "$file"
done

est corrigé en

for file in *; do
 printf '%s\n' "$file"
done

ou bien, pour des recherches plus compliquées:

NUL=$(printf '8f872742767daab9354ff276b9d5504afb94060400')
find /path/to/dir -type d -name '* *' -print0 \
 | while IFS="$NUL" read file; do
 printf '%s\n' "$file"
done

L'information fournie par ls -l est facilement accessible avec stat.

Construction de la ligne de commande

Un problème analogue à celui de l'analyse la sortie de la commande ls est celui de la préparation de l'appel à une commande du type

utility -file file1 -file file2

La version vite-fait mal fait consiste à dire:

argv=''
for file in *; do
 argv="$argv -file $file" ← Exemple à ne pas suivre
done
utility $argv

Évidemment, comme vos noms de fichiers utilisent un codage binaire où le ' ' représente 0 et le retour à la ligne représente 1, tout va de travers! La façon indestructible d'appeler utility est d'utiliser xargs -0 comme dans:

job_strategy()
{
 local file
 for file in *; do
 printf '-file\000%s\000' "$file"
 done
}

job_strategy | xargs -0 utility

Programmation structurée

Les débutants commettent souvent l'erreur consistant à vouloir répliquer les structures d'enregistrement (les struct de C ou C++, les record de Pascal) dans des variables du shell.

Mais ce n'est pas comme ça que ça marche!

Un bonne règle pour l'organisation des données dans un programme shell est de de n'utiliser les variables que pour les objets du monde UNIX: chemins de dossiers, chemins de fichiers, pids, uids, etc. Tout le reste, en particulier les structures d'enregistrement, va dans des fichiers ou des pipes, sous forme de table séparée par des | ­ou par des caractères ASCII US=$(printf '\037) pour ceux qui vivent au pays des gens utilisant | dans leurs données — et les traitements complexes sont effectués par des filtres. Si ça ne convient pas à votre programme, changez de langage, utilisez OCaml, Perl ou Python. Bien-sûr, tout le monde n'est pas de cet avis, en particulier, les maîtres de la programmation shell. Les maîtres ont une caractéristique importante qui démultiplie leur faculté de jugement bien au delà de ce que peut imaginer un débutant : ce sont des maîtres. Si vous êtes un débutant, ne vous laissez pas impressionner par les maîtres qui ont déjà écrit un interpréteur Scheme en sed et utilisent la commande printf pour insérer du code shell auto-modifiant dans le noyau Linux. N'hésitez pas à utiliser un autre langage pour résoudre votre problème.

Exemple du renommage de fichier

Illustrons cette technique sur l'exemple classique du renommage de fichier en masse. La procédure finale se décompose en

job_select | job_strategy | job_perform

On a trois fonctions correspondant aux étapes suivantes:

	
job_select prépare une liste des fichiers à renommer ;

	
job_strategy prépare une donnée tabulaire avec deux colonnes, l'une contenant le nom initial, l'autre le nouveau nom ;

	
job_perform qui fait la modification finale.

On fait l'hypothèse paranoïaque que les caractères /n et | n'apparaîssent pas dans les noms de fichiers. Si ce n'est pas le cas, utilisez un vrai langage de programmation — mais les maîtres, eux, savent comment faire!

La fonction job_select ressemble typiquement à

job_select()
{
 find /path/to/directory -name '*@!*' -print0
}

La commande job_strategy prépare un plan de travail:

job_strategy()
{
 sed -e'
 h
 s/@!/--censored--/g
 H
 x
 s/\n/|/'
}

Ceux qui n'ont pas encore écrit d'interpréteur Scheme en sed peuvent lire le walkthtough suivant, en anglais parceque je ne sais pas dire walkthrough ou pattern space en français et que personne n'en comprendrait les traductions:

h Save pattern space to hold space
s/…/…/ Edit the name in the pattern space
H Append the edited name to the hold space
x Exchange hold and pattern space
s/\n/|/ Replace the newline by a field separator

Bien-sûr on peut utiliser n'importe quel autre langage que sed pourvu qu'on soit capable d'écrire un filtre transformant

Quel @! de patron

en

Quel @! de patron|Quel --censored-- de patron

Finalement la procédure de renommage ressemble à

job_rename()
{
 local oldname newname
 while IFS='|' read oldname newname; do
 if ["$oldname" = "$newname"]; then
 printf 'Skipping %s\n' "$oldname" >&2
 else
 mv "$oldname" "$newname"
 fi
 done
}

Oui je sais, on peut faire la même chose avec rename '/@!/--censored--/' * ou avec la commande @! de zsh, mais il s'agit d'un exemple un peu scolaire pour illustrer la méthode.

Un effet secondaire très appréciable de cette organisation est qu'on peut tester chaque morceau individuellement et faire du mocking facilement.

Ainsi, si au lieu d'exécuter job_select | job_strategy | job_perform à la fin de mon script j'utilise simplement job_select je peux m'assurer que la liste de fichiers est correcte, et avec job_select | job_strategy je peux vérifier que mon plan de travail est correct. Aussi, je peux créer des données artificielles pour tester job_strategy, par exemple

mock_issue_42_job_select()
{
 cat <<'EOF'
This is an example of pathological input causing issue 42
EOF
}

mock_issue_42_job_select | job_strategy

Exemple de l'analyse de contenu de fichier vidéo

Un exemple plus amusant est celui de cette fonction, issue d'un programme de vidéothèque que j'ai écrit en shell.

cinema_identify FILE
Identify the given file.
#
Identifying the file causes a content index to be dumped on
stdout. This content index describes the content of the file.
There is two types of records, for Tracks and for Attachments.
#
Track|INDEX|TYPE|CODEC
Attachment|INDEX|TYPE|SIZE|FILENAME
#
An output example is:
#
Track|0|video|V_MPEG4/ISO/AVC
Track|1|audio|A_VORBIS
Track|2|audio|A_VORBIS
Track|3|audio|A_VORBIS
Track|4|subtitles|S_VOBSUB
Track|5|subtitles|S_VOBSUB
Attachment|1|image/jpeg|93405|+POSTER
Attachment|2|text/plain|54|+INDEX

cinema_identify()
{
 env LANG=C mkvmerge --identify "$1" \
 | sed -e '
s/'//g
/^File/{
 d
}
/^Track/{
 s/ ID /|/
 s/: /|/
 s/ (\(.*\))/|/
}
/^Attachment/{
 s/ ID /|/
 s/: type /|/
 s/. size /|/
 s/ bytes, file name /|/
}'
}

Cette commande prend un fichier vidéo en argument et écrit sur la sortie un truc du genre

Track|0|video|V_MPEG4/ISO/AVC
Track|1|audio|A_VORBIS
Track|2|audio|A_VORBIS
Track|3|audio|A_VORBIS
Track|4|subtitles|S_VOBSUB
Track|5|subtitles|S_VOBSUB
Attachment|1|image/jpeg|93405|+POSTER
Attachment|2|text/plain|54|+INDEX

Bien-sûr dans le vrai script, le script sed est dans un fichier auxiliaire pour, pour le test et la lisibilité.

Voici comment traiter de façon polymorphe cette sortie:

cinema_polymorph_example()
{
 local field_type rest
 while IFS='|' read field_type rest; do
 IFS='|' set -- $rest
 case "$field_type" in
 Track) process_track "$@";;
 Attachment) process_attachment "$@";;
 *) >&2 printf 'Unknown field type %s\n' "$field_type";
 exit;;
 esac
 done
}

Dans cet exemple chaque ligne commençant par Track est traitée par process_track et chaque ligne commençant par Attachment est traitée par process_attachment.

Liste des commandes travaillant avec des données tabulaires

Voici une liste pêle-mêle de fonctions travaillant sur des données tabulaires.

awk(1) - pattern-directed scanning and processing language
sed(1) - stream editor
paste(1) - merge corresponding or subsequent lines of files
join(1) - relational database operator
comm(1) - select or reject lines common to two files
cut(1) - cut out selected portions of each line of a file
lam(1) - laminate files
sort(1) - sort or merge records (lines) of text and binary files
uniq(1) - report or filter out repeated lines in a file

Il faut bien noter que toutes ces fonctions n'utilisent pas forcément les mêmes options pour définir le délimiteur.

Introspection

Oui, vous lisez bien, le shell permet de faire l'introspection, de façon limitée. Par exemple, voyons comment définir une mini base de données de repositories git à sauvegarder:

project1_repo='/var/git/project1.git'
project1_refs='master v1.0 v2.0'
project2_repo='/var/git/project2.git'
project2_refs='master v1.0 v2.0'

gitdb_list()
{
 set | sed -n -e 's/_repo$//p'
}

gitdb_tabular()
{
 local repo dir refs
 gitdb_list | while read repo; do
 eval printf '%s|%s|%s\n' "$repo" "\$${repo}_dir" "\$${repo}_refs"
 done
}

gitdb_backup()
{
 local repo dir refs
 gitdb_list | while read repo dir refs; do
 git bundle create "/backup/$repo" "$repo_dir" HEAD $refs
 done
}

Dans ce cas particulier, je préfèrerais utiliser directement une base de données tabulaires, mais si pour une raison ou une autre on ne devait utiliser que des variables shell pour transmettre l'information alors cette technique est utilisable.

Aller plus loin

	
ShellCheck (en ligne ou localement)
(1275 clics)

	
Obsolete and deprecated syntax (Bash Hackers wiki)
(831 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections72.png

