

Ruby 2.0 est sorti

Posté par reno le 05 mars 2013 à 11:00.
Édité par _jordan_, YLD, Marc Quinton, baud123, Nicolas Blanco, barmic, Katyucha et Nÿco.
Modéré par baud123.
Licence CC By‑SA.

Étiquettes :

	ruby

[image: Ruby]

Pour fêter ses 20 ans, Ruby arrive en version 2.0 !

Malgré ce changement de version majeur, il y a moins de différences entre Ruby 2.0 et 1.9 qu'entre Ruby 1.9 et 1.8.

La compatibilité avec les logiciels 1.9 est quasiment assurée. Cerise sur le gâteau : cette nouvelle version est considérée comme stable et on y trouve un certain nombre de nouveautés et d'optimisations.

Pour rappel : Ruby est un langage de programmation orienté objets, à typage dynamique et qui s'est inspiré de Lisp, Perl, Smalltalk, Eiffel, etc. Sa principale caractéristique est de mettre en avant les besoins humains avant ceux informatiques, et notamment le fun et la productivité.

NdM : merci à reno pour son journal et _jordan_ pour ses compléments pour approfondir, ainsi qu'à YLD, Marc Quinton, Nicolas Blanco, Barret Michel, Nÿco, Katyucha pour leur participation.

Sommaire

	
Changements du langage
	
Paramètres par mot-clé

	
UTF8

	
Débogage

	
Variables non utilisées

	
Création de hash

	
Chemin du dossier courant

	
Création de tableaux de symboles

	
Inclusion par précédence

	
Onigmo : nouveau moteur d'expression régulière

	
Refinements

	
 Lazy Enumerator et Enumerable

	
API de gestion asynchrone des exceptions

	
Optimisations des performances
	
Ramasse-miette

	
Autres

	
Documentation

	
Autres mises à jour notables

Changements du langage

Paramètres par mot-clé

Le langage gère maintenant directement le passage de paramètres par mots clefs : c'était déjà possible avant, mais en utilisant un moyen détourné (via un Hash en paramètre).

Ci dessous un exemple de définition de méthode avec une valeur par défaut pour un argument "nommé".

Ruby 1.9 et précédents
def render(source, opts = {})
 opts = {fmt: 'html'}.merge(opts)
 r = Renderer.for(opts[:fmt])
 r.render(source)
end

Ruby 2
def render(source, fmt: 'html')
 r = Renderer.for(fmt)
 r.render(source)
end

A noter que le passage de paramètres par mots clefs utilise la syntaxe de Ruby 1.9 pour définir les Hash.

Ruby 1.8
my_hash = { :key1 => 1, :key2 => 3 }

Ruby 1.9
my_hash = { key1: 1, key2: 3 }

UTF8

Ruby 1.9 ayant introduit la prise en charge complète de l'UTF-8 au niveau des chaînes, Ruby 2.0 traite désormais les fichiers de code source dans cet encodage (ce qui peut poser des problèmes de compatibilité).

Débogage

DTrace et SystemTap sont maintenant pris en charge pour instrumenter l'exécution des scripts.

Variables non utilisées

Les variables commençant par _ peuvent désormais être inutilisées dans vos sources sans causer de warning. C'est l'option -w qui permet d'activer cette fonction.

Ruby 1.9
def foo
 _, world = 'hello, world'.split(', ')
 world
end
=> pas d'avertissement

Ruby 2.0
def hi
 _hello, world = 'hello, world'.split(', ')
 world
end
=> pas d'avertissement non plus.

Création de hash

to_Hash permet de convertir une classe en hash. Cette méthode a été implémentée pour nil, Struct et OpenStruct

Ruby 2.0:
Car = Struct.new(:make, :model, :year) do
 def build
 #...
 end
end
car = Car.new('Toyota', 'Prius', 2014)
car.to_h # => {:make=>"Toyota", :model=>"Prius", :year=>2014}
nil.to_h # => {}

Attention, cela n'a pas été implémenté pour les classes Enumerable/Array

{hello: 'world'}.map{|k, v| [k.to_s, v.upcase]}
 .to_h # => NoMethodError:
undefined method `to_h' for [["hello", "WORLD"]]:Array

Chemin du dossier courant

__dir__ retourne le chemin absolu du dossier du fichier en cours d'exécution.

Création de tableaux de symboles

%i et %I ont été ajoutés pour la création de tableaux de symboles avec une syntaxe minimale.

Ruby 1.9:
KEYS = [:foo, :bar, :baz]
Ruby 2.0:
KEYS = %i[foo bar baz]

de la même manière que %w et %W servaient à la création simplifiée de listes de chaîne de caractères :

KEYS = %w[foo bar baz]
KEYS = ["foo", "bar", "baz"]

Inclusion par précédence

Lorsqu'un module est inclus dans un autre, il se retrouve automatiquement ajouté après la définition de celui qui l'inclut. Cela oblige à pas mal de gymnastique lorsque l'on veut "wrapper" des méthodes du conteneur.

class Template
 def initialize(erb)
 @erb = erb
 end
 def render values
 ERB.new(@erb).result(binding)
 end
end

module RenderProfiler
 def self.included base
 base.send :alias_method, :render_without_profiling, :render
 base.send :alias_method, :render, :render_with_profiling
 end
 def render_with_profiling values
 start = Time.now
 render_without_profiling(values).tap {
 $stderr.puts "Rendered in #{Time.now - start}s."
 }
 end
end

class Template
 include RenderProfiler
end

Template.ancestors
 #=> [Template, RenderProfiler, Object, Kernel, BasicObject]

Désormais il est possible d'inclure un module avant la défintion de son conteneur:

module RenderProfiler
 def render values
 start = Time.now
 super(values).tap {
 $stderr.puts "Rendered in #{Time.now - start}s."
 }
 end
end
class Template
 prepend RenderProfiler
end
Template.ancestors
 #=> [RenderProfiler, Template, Object, Kernel, BasicObject]

Exemples ci-dessus issus du blog de Ben Hoskings

Onigmo : nouveau moteur d'expression régulière

Onigmo remplace Oniguruma comme moteur d'expressions régulières (c'est un fork). Il permet d'utiliser certaines fonctionnalités présentes dans perl depuis la version 5.10.

Notamment l'expression conditionnelle (?(condition)yes-pattern|no-pattern) qui vaut yes-pattern si la condition est vérifiée, no-pattern sinon.

Refinements

Les versions précédentes de Ruby permettent déjà de redéfinir des méthodes ou d'étendre des classes existantes. Le défaut principal de cette fonction très puissante est que les modifications de classes existantes se retrouvent dans tout un projet ainsi que les librairies utilisées. Les refinements, introduits dans Ruby 2.0 en fonctionnalité expérimentale, permettent d'effectuer ces modifications de manière "cloisonnée".

Magnus Holm en a donné un bon exemple dans un article à ce sujet (en anglais)

module TimeExtensions
 refine Fixnum do
 def minutes; self * 60; end
 end
end

class MyApp
 using TimeExtensions

 def initialize
 p 2.minutes
 end
end

MyApp.new # => 120
p 2.minutes # => NoMethodError

Dans cet exemple, plutôt que d'ajouter la méthode minutes dans la classe Fixnum, il l'a ajouté en tant que «raffinement» dans le module TimeExtensions. L'intérêt est que la méthode minutes n'existe que dans le bloc contenant using TimeExtensions

 Lazy Enumerator et Enumerable

Enumerators et Enumerables sont maintenant disponibles en version lazy (optimisation visant à retarder une opération jusqu'au moment où son résultat est nécessaire, ou bien au moment où des ressources sont inoccupées) :

Enumerable#lazy et Enumerator::Lazy permettent de gérer des suites potentiellement infinies (lazy streams)

A cela s'ajoutent Enumerator#size et Range#size pour déterminer la taille par évaluation retardée (lazy evaluation)

API de gestion asynchrone des exceptions

Une nouvelle API de gestion asynchrone des exceptions fait son apparition dans cette version 2.0.

Optimisations des performances

Ramasse-miette

Le ramasse-miettes a été optimisé par la technique du "bitmap marking". Il devrait radicalement réduire la mémoire occupée par les programmes ruby tournant sur serveur web. Narihiro Nakamura (en anglais) y travaillait depuis 2008.

L'idée principale est de profiter de la non-duplication de structures égales lors des forks (voir Copy-On-Write). En ruby, les valeurs sont divisées en deux parties : les données (RArray, RHash, RFile …) et un ensemble de flags. On appelle ces valeurs des RValue (Ruby Value).

Les ensembles de flags sont souvent identiques d'une RValue à une autre. Le système ne devrait donc pas avoir à les dupliquer. Seulement, l'un des flags FL_MARK, est régulièrement modifié par le garbage collector pour indiquer les RValue recyclables. Comme celui-ci change très souvent de valeur, l'ensemble de flags varie, obligeant le système à dupliquer tout l'ensemble.

Narihiro Nakamura a donc sorti FL_MARK de la structure en regroupant tous les FL_MARK dans une collection de bit mappés à la RValue (d'où le "bitmap marking"). Ainsi Ruby peut régulièrement modifier FL_MARK sans toucher à l'ensemble de flags de la RValue.

Dès lors, le système n'a pas besoin de dupliquer les ensembles de flags lorsqu'ils sont parfaitement égaux pour deux RValue différentes. Vous l'aurez peut-être compris, ceci est valable lors des appels de fork qui, dans les systèmes UNIX, ne dupliquent pas la mémoire tant qu'elle est identique aux deux processus.

Pour plus d'informations à ce sujet, je vous invite à lire cet article très intéressant (en anglais).

Autres

D'autres optimisations ont été faites pour améliorer la vitesse de démarrage notamment sur Kernel#require, les calculs sur des nombres à virgule flottante et sur la machine virtuelle. Cela profite déjà grandement au framework web Ruby on Rails.

Documentation

D'après le site ruby-lang.org : « Un effort important à également été produit pour améliorer la documentation, ce qui a été une demande régulière de la part de la communauté. Le volume de documentation rdoc pour les modules et les méthodes a ainsi notablement augmenté : 75% de la 2.0.0 est couvert, tandis que la 1.9.3 plafonnait vers les 60%. Par ailleurs, vous pouvez retrouver une description de la syntaxe ruby en appelant : »

$ ri ruby:syntax

L'ouvrage de référence sur Ruby (le "pickaxe") sort, lui, dans une nouvelle édition qui couvre désormais Ruby 2.0.

Autres mises à jour notables

La version 2.0.0 de RubyGems et la version 1.3 de Bundler accompagnent la sortie de Ruby 2.0, elles ajoutent la gestion de cette dernière, tout en restant compatible avec les 1.9.x.

De même, l'équipe de Ruby on Rails sort une version 3.2.13-rc1 compatible Ruby 2.0 ainsi qu'une version 4 en bêta pour qui Ruby 2 sera l'environnement de prédilection.

Aller plus loin

	
Journal à l'origine de la dépêche
(86 clics)

	
journal de sortie ruby 1.9.2
(46 clics)

	
nouveautés de ruby 2 par l'exemple
(159 clics)

	
Annonce officielle
(90 clics)

	
What's new in ruby 2.0
(91 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections63.png

