

Sortie de Blitzen 0.0.8

Posté par Samos le 12 novembre 2010 à 16:28.

Modéré par Bruno Michel.

Étiquettes :

	logiciel

[image: Internet]

Blitzen est un serveur d'applications déjà présenté ici à travers un journal et une dépêche à l'occasion des deux précédentes versions. En résumé, il s'agit d'un projet visant à permettre l'écriture de sites ou applications web via une API proche de celle de GTK+. Il s'agit donc d'une approche orientée composants, fournissant une abstraction totale des technologies sous-jacentes (HTML, JavaScript, CSS...).

Blitzen est écrit en C/GObject. Bien qu'il soit possible d'écrire des sites web directement en C/GObject, son but premier est de permettre l'écriture des applications en Vala. Les applications sont compilées sous la forme de shared objects (so) qui sont ensuite déployés et instanciées à la demande, sur le modèle des serveurs d'application Java. Blitzen vise à allier la simplicité des frameworks orientés composants avec le niveau de performance du code natif.

D'autre part, de nombreux frameworks se définissant comme component oriented obligent parfois le développeur à manipuler directement les technologies web tant redoutées. Certains rendent délicate la manipulation ou l'ajout d'éléments d'interface après sa définition. Blitzen vise à être le plus proche possible de l'API des applications desktop.

Les corrections de bugs et autres optimisations mises à part, la principale nouveauté de cette nouvelle version 0.0.8 est l'arrivée d'une interface de construction des vues (pages) basée sur des fichiers XML. Il est désormais possible de séparer le code applicatif de la description de l'interface. Cette infrastructure permet l'autoconstruction des pages avec un minimum de code, comme détaillé dans la seconde partie de la dépêche.

NdM : Blitzen est sous licence LGPLv2
Dans cette version 0.0.8 de Blitzen, une nouvelle manière de construire les vues (pages) a été introduite. Comme un extrait de code vaut mieux qu'un long discours, voici un exemple type de construction d'une vue:

public class HelloView : View {

 public Label txtLbl;

 public Label welcomeLbl;

 public Entry nameEntry;

 public Button okBtn;

 public FlowContainer flow;

 construct{

 this.txtLbl = new Label.with_text("Enter your name : ");

 this.welcomeLbl = new Label();

 this.nameEntry = new Entry();

 this.okBtn = new Button.with_label("Ok");

 this.okBtn.set_navigate_mode(false,false);

 this.okBtn.clicked += this.on_button_clicked;

 this.flow = new FlowContainer();

 this.flow.add_child(this.txtLbl);

 this.flow.add_child(this.nameEntry);

 this.flow.add_child(this.okBtn);

 this.flow.add_child(this.welcomeLbl);

 this.set_child(this.flow);

 }

 […]

}

Comme on le voit, chaque widget est construit « à la main » et la structure de l'interface, l'imbrication des containers, est définie de la même manière.

En utilisant la nouvelle interface de construction d'interface, nommée StkBuilder, le code précédent devient:

public class HelloView : View {

 public Label txtLbl { get; set; }

 public Label welcomeLbl { get; set; }

 public Entry nameEntry { get; set; }

 public Button okBtn { get; set; }

 public FlowContainer flow { get; set; }

 construct{

 this.build_from_spec(null);

 this.okBtn.clicked += this.on_button_clicked;

 }

	[…]

}

Toute la magie réside dans la méthode StkView.build_from_spec(); Cette méthode permet de construire l'interface suivant une définition située dans un fichier XML. Si aucun fichier n'est spécifié (utilisation d'un paramètre « null »), comme dans l'exemple présent, StkBuilder tentera d'ouvrir un ficher XML de la forme ClassName.xml.

Le fichier HelloView.xml définit l'interface de la manière suivante:

<class name="HelloView" parent-class="StkView" title="Hello View">

 <object class="StkFlowContainer" backed-on="flow" />

 <object class="StkLabel" text="Enter your name: " backed-on="txtLbl" />

 <object class="StkEntry" backed-on="nameEntry" />

 <object class="StkLabel" backed-on="welcomeLbl" />

 <object class="StkButton" backed-on="okBtn" label="Ok" navigate="false" mix-replace="false" />

La définition d'une interface reprend l'imbrication des widgets. Il est également possible de spécifier les propriétés de chaque objet directement dans le tag associé. L'originalité de StkBuilder est de ne pas forcer le développeur à interroger le système de construction pour obtenir un pointeur sur les objets instanciés. StkBuilder met le paramètre « backed-on » à la disposition du développeur. Ce paramètre permet, grâce au système de propriétés de GObject, d'associer un widget à un des membres de la classe. Ainsi, à l'issue du processus de construction, un pointeur sur l'objet associé est disponible via les membres de la classe, de la même manière que si l'interface avait été construite « à la main »

Il ne reste plus au développeur qu'à associer signaux et callbacks. En effet, l'autoconnexion de signaux n'est pas encore implémentée. Cette fonctionnalité sera disponible dans la prochaine version de Blitzen.
Aller plus loin

	
Le site du projet
(8 clics)

	
L'annonce de sortie
(3 clics)

	
Le tarball (sources+doc+demo+tuto)
(7 clics)

	
Le manuel avec un tutorial
(6 clics)

	
Du code d'exemple
(2 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections22.png

