

Sortie de Chisel 3, un langage de description matériel basé sur Scala

Posté par martoni (site web personnel, Mastodon) le 12 novembre 2016 à 21:13.
Édité par Davy Defaud, Benoît Sibaud, palm123, Yves Bourguignon, Ontologia, ZeroHeure, patrick_g et claudex.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	chisel

	scala

	firrtl

	vhdl

	verilog

	sshdl

[image: Matériel]

Jonathan Bachrach vient de l’annoncer sur la liste de diffusion chisel-user : le premier instantané de Chisel 3 est officiellement sorti.

Chisel est un langage de description matériel (HDL) basé sur le langage Scala. Le langage n’étant pas reconnu par les principaux logiciels de synthèse, il génère du langage Verilog synthétisable à la « compilation ».

Sommaire

	Qu’est‐ce que Chisel ?

	Passage de Chisel 2 à Chisel 3

	Petit exemple Chisel

Qu’est‐ce que Chisel ?

C’est un langage libre développé et soutenu par l’université de Berkeley (UCB). Université bien connue pour avoir « lancé » pas mal de standards libres d’aujourd’hui (pour rappel, BSD signifie Berkeley Software Distribution, soit collection de logiciels de Berkeley).

Contrairement à VHDL et Verilog — les deux langages de description de matériel (HDL) considérés comme standards dans le monde du FPGA et des ASIC —, Chisel est un langage synthétisable et synchrone par construction. Ce qui signifie qu’une architecture décrite correctement (sans alertes) avec Chisel sera synthétisable directement.

Chisel est également un langage synchrone, tous les changements d’états se font donc au rythme d’une horloge globale qui est implicite par défaut. Il existe cependant des stratégies de changement de domaines d’horloges pour les circuits complexes.

Chisel fait partie de ces nouveaux langages de description de matériel que l’on pourrait qualifier de SSHDL — pour Synchronous Synthesizable Hardware Description Language —, dont font partie également Migen, Cλash et SpinalHDL.

Passage de Chisel 2 à Chisel 3

La grosse différence entre Chisel 2 et Chisel 3 est l’utilisation d’un langage de netlist — on parle généralement de langage RTL — intermédiaire nommé FIRRTL entre la description en Chisel et le Verilog généré.

Chisel 2 comportait un certain nombre de backends qui permettaient de transformer le programme Chisel en Verilog, modèle C++ ou SystemC pour la simulation. Avec Chisel 3 la génération de ces backends a été abandonnée. Chisel 3 ne génère que du FIRRTL, FIRRTL génère à son tour du Verilog. Et la génération du modèle C++/SystemC a été déléguée à l’excellent Verilator histoire de mutualiser les efforts de développement. Ce qui nous donne la chaîne de développement suivante :

Chisel3 -> FIRRTL -> Verilog |-> C++/SystemC
 |-> simulation
 |−> synthèse

Petit exemple Chisel

La documentation de Chisel donne comme exemple le calcul de PGCD au moyen de l’algorithme d’Euclide. Cet exemple permet de trouver le PGCD des deux entiers a et b donnés en entrée. La sortie se présente ensuite comme un entier sur 32 bits z et la sortie de validation v permet de signaler la fin du calcul.

 import chisel3._

 class GCD extends Module {
 val io = IO(new Bundle {
 val a = Input(UInt.width(32))
 val b = Input(UInt.width(32))
 val e = Input(Bool())
 val z = Output(UInt.width(32))
 val v = Output(Bool())
 })
 val x = Reg(UInt.width(32))
 val y = Reg(UInt.width(32))
 when (x > y) { x := x -% y }
 .otherwise { y := y -% x }
 when (io.e) { x := io.a; y := io.b }
 io.z := x
 io.v := y === 0.U
 }

On remarque le bundle d’entrée‐sortie io = IO(new Bundle {}) permettant de déclarer les différents ports du module. Ce qui marque d’emblée, c’est l’absence d’entrée clk. C’est justement parce que c’est un langage synchrone que l’on ne voit pas l’horloge, elle sera générée à la « compilation » en FIRRTL (*.fir), puis en Verilog (*.v).

La base de la logique synchrone de Chisel est le registre Reg(). Ça n’est rien d’autre qu’une bascule D Qui recopie sa valeur d’entrée sur la sortie sur front montant de l’horloge, ce qui permet de synchroniser des valeurs d’entrée qui n’arriveraient pas en même temps et de présenter ces valeurs au prochain cycle d’horloge.

La connexion du registre avec les signaux d’entrée‐sortie se fait ensuite avec le symbole de connexion « := ».

On retrouvera tous les noms des signaux déclarés en Chisel dans le code Verilog généré. Ce qui permet un débogage plus facile et une simulation avec tous les simulateurs du marché.

Voici l’en‐tête Verilog généré par Chisel pour le module GCD :

...
module GCD(
 input clock,
 input reset,
 input [31:0] io_a,
 input [31:0] io_b,
 input io_e,
 output [31:0] io_z,
 output io_v
);
 reg [31:0] x;
 reg [31:0] GEN_4;
 reg [31:0] y;
 reg [31:0] GEN_5;
...

Deux signaux d’entrées ont été ajoutés au module : ce sont l’horloge (clock) et la réinitialisation (reset). La conception étant synchrone, l’horloge est implicite et n’est ajoutée qu’au moment de générer le code synthétisable.

Comme Scala est un langage objet, il est possible de faire hériter le module GCD pour factoriser du code générique. Il est également possible d’instancier le module dans un module de niveau supérieur et de connecter ses entrées‐sorties avec d’autres modules.

D’une manière générale, l’utilisation d’un langage générique comme Scala pour définir un langage HDL permet de faire un code moins verbeux et décuple les possibilités de création et de développement HDL.

Chisel 3, tout comme ses concurrents Migen, Cλash et autre SpinalHDL sont désormais mûrs pour être utilisés dans de vrais projets industriels. C’est d’ailleurs la base du processeur RISC-V sodor et rocket-chip.

Pourtant, les SSHDL ne sont pas encore enseignés dans les universités qui continuent à former sur VHDL en Europe et Verilog aux États‐Unis.

Il est temps de passer à des langages HDL de plus haut niveau et de considérer VHDL/Verilog comme l’assembleur des FPGA et ASIC !

Aller plus loin

	
Annonce de la sortie du premier « snapshot » 3 de Chisel
(148 clics)

	
Site officiel de Chisel
(309 clics)

	
FIRRTL
(175 clics)

	
Verilator
(125 clics)

	
GitHub de Chisel 3
(130 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections19.png

