

Sortie de DragonFly BSD 2.6 et entretien avec Matt Dillon

Posté par patrick_g (site web personnel) le 06 avril 2010 à 12:38.

Modéré par baud123.

Étiquettes :

	bsd

	dragonflybsd

[image: FreeBSD]

Le projet DragonFly BSD est le petit poucet des systèmes d'exploitations de la famille BSD. Dans l'ombre de ses grands frères FreeBSD, OpenBSD et NetBSD, le projet initié par le développeur Matt Dillon cherche à se différencier par des choix techniques originaux.

La version 2.6 de DragonFly BSD vient d'être annoncée sur le site officiel et je vous propose une petite liste des nouveautés ainsi qu'un court entretien avec Matt Dillon qui a aimablement accepté de répondre à quelques questions.
DragonFlyBSD

Le projet DragonFlyBSD est issu à l'origine d'une divergence technique, en 2003, entre l'équipe de FreeBSD et le développeur Matt Dillon. Alors que FreeBSD, pour répondre au défi des processeurs à plusieurs cœurs, allait prendre le difficile chemin des verrous à grain fin, Matt pensait qu'il fallait s'orienter dans une autre direction. Il a choisi de se baser sur la série éprouvée des FreeBSD 4.x pour la faire évoluer, selon ses choix à lui.

La principale différence avec FreeBSD - et Linux par la même occasion - c'est que la technique des verrous à grain fin, jugée trop complexe par Matt, n'est pas utilisée dans DragonFlyBSD.

À la place, c'est le système LWKT (pour Light Weight Kernel Threads) qui est utilisé. Il utilise un ordonnanceur par CPU (les processus sont donc compartimentés dans leur CPU et ils ne peuvent migrer qu'exceptionnellement avec un inter-processor interrupt (IPI)). Les mutex de FreeBSD sont remplacés par des sortes de jetons logiciels (serialized tokens) qui garantissent à un ensemble de threads qu'il n'y aura pas de conflit.

Une autre originalité de DragonFlyBSD est son système de fichiers réparti HAMMER dont la page de présentation explique les caractéristiques (contrôles d'intégrité, pas besoin de fsck, snapshots instantanés etc).

Le but final de DragonFlyBSD, pas encore atteint, est d'obtenir un système à image unique pour les clusters (un seul OS réparti sur plusieurs machines) au lieu d'un cluster traditionnel (plusieurs OS pour plusieurs machines).

Nouveautés

Après la version 2.4 en septembre dernier, c'est maintenant la version 2.6 de DragonFlyBSD qui est disponible.

Voici une courte liste des nouveautés. À noter que plusieurs nouveautés proviennent d'autres BSD, ce qui montre qu'en dépit du fork initial la « pollinisation croisée » fonctionne toujours et que les relations entre les équipes de développement sont bonnes.

	La nouvelle fonction de swapcache pour les disques flash SSD permet un haut niveau de performances. On peut ainsi se servir d'un SSD pour cacher les données d'un système de fichier présent sur un disque traditionnel. Il faut compter environ 1 Go de SSD pour cacher 2 million d'inodes et DragonFlyBSD gère jusqu'à 512 Go de swap par périphérique en mode 64 bits. Matt Dillon décrit ses tests dans ce post sur la liste de diffusion.

	Le code du système de fichiers temporaire en mémoire vive tmpfs a été importé de NetBSD par Naoya Sugioka. Contrairement à l'ancien système MFS, il ne nécessite pas de dupliquer les données.

	Le système de fichiers HAMMER propose maintenant une fonction d'enregistrement de tous les changements (REDO log) qui permet d'améliorer les performances de fsync sans dégrader les fonctions de récupération rapide de HAMMER.

	Les snapshots du système de fichiers HAMMER qui allaient auparavant dans /snapshots vont maintenant, comme l'indique la page de man, dans /var/hammer.

	La couche de compatibilité Linux (Linuxulator) est mise à jour. Elle permet maintenant de faire fonctionner Java ou Flash.

	L'infrastructure de watchdog, qui sert à redémarrer en cas de blocage permanent, a été importée depuis OpenBSD.

	Le code ACPI et d'opencrypto ont, eux, été importés depuis FreeBSD.

	Les performances des entrées/sorties non séquentielles ont été significativement améliorées.

	L'accéléromètre des portables de type Thinkpad est désormais géré par le pilote aps(4).

	Les processeurs de type Geode LX sont pris en charge et le pilote glxsb(4) permet de profiter des fonctions intégrées de cryptographie.

	La gestion de l'architecture x86_64, ajout plus récent que le x86 qui était au début la seule architecture prise en charge, s'améliore dans cette nouvelle version.

	Mise à jour des programmes externes (GCC 4.4.2; OpenSSH 5.3p1; Sendmail 8.14.4; Bind 9.5.2-P3; Binutils 2.20 etc).

Pour avoir une idée de quelques fonctions qui seront sans doute introduites dans les versions futures de DragonFlyBSD, on peut consulter la page du Google Summer of Code 2010 qui liste les projets retenus.

Entretien

À l'occasion de la sortie de DragonFlyBSD 2.6, j'ai envoyé quelques questions au leader du projet, Matt Dillon et il a bien voulu y répondre pour les lecteurs de LinuxFr.

patrick_g : DragonFlyBSD est moins connu que Free/Net/OpenBSD. Combien de codeurs ou testeurs font partie de l'équipe ?

Matt Dillon : Nous avons environ 12 codeurs sérieux et environ 50 personnes au total. Je dirais que nous avons quelques centaines d'utilisateurs... ce ne sont pas des gros chiffres. La plupart des nouveaux utilisateurs sont attirés par le système de fichier HAMMER.

patrick_g : Vous avez forké FreeBSD à la suite de désaccords techniques. Est-ce-que vous continuez à penser que les choix de FreeBSD étaient mauvais ?

Matt Dillon : Oui. Je crois que DragonFlyBSD a été capable d'atteindre une meilleure stabilité au fil du temps et qu'il a été amélioré.

patrick_g : Pourquoi le modèle de sérialisation des tokens est meilleur que celui des mutex à grains fins ?

Matt Dillon : Les différences vont plus loin que ça. Par rapport aux autres, le modèle de sérialisation des tokens a un double avantage :

1) ne pas subir les deadlocks, puisqu'ils sont automatiquement déverrouillés quand un thread bloque explicitement et verrouillés à nouveau ensuite.

2) permettre les appels aux sous-systèmes qui n'ont pas la connaissance de quels tokens sont actuellement détenus. Comme les tokens sont suivis par l'ordonnanceur, ce dernier peut efficacement déterminer quels sont les threads exécutables qui peuvent acquérir tous leurs verrous et s'exécuter.

Nous utilisons trois types de verrous. Les tokens sont principalement utilisés pour le scan à longue durée des listes comme les scans au mount. Les verrous de type lockmgr sont utilisés pour les verrous qui doivent être tenus au travers des conditions de blocage. Enfin les spinlocks sont utilisés pour les accès exclusifs de courte durée.

L'autre différence majeure par rapport aux autre modèles est le fait que nous utilisons une localisation des données par processeur pour de nombreux sous-systèmes. Cela permet de les coder de façon aisée et sans verrous.

patrick_g : les buts techniques de DragonFlyBSD sont très impressionnants, mais la partie la plus connue est HAMMER. Comment tient-il la comparaison avec les autres systèmes de fichiers ?

Matt Dillon : la comparaison lui est très favorable. Le scan des répertoires est un peu plus lent qu'il pourrait l'être (quelque part entre ext et reiser, mais pas aussi mauvais que reiser). Avec les récentes améliorations sur REDO/fsync, les performances de fsync sont maintenant extrêmement bonnes ; et, avec la nouvelle gestion de swapcache, qui est capable de cacher plus de 64 millions d'inodes sur un SSD, la performance de recherche de fichiers est très bonne.

Les performances de lecture/écriture de fichiers sont également très bonnes.

Je ne suis pas dans le business qui consiste à faire des comparaisons de performances mais je note que HAMMER dispose de fonctions, comme la récupération instantanée, l'historique à grain fin ou la prise d'empreintes (snapshotting) automatique, que la plupart des autres systèmes de fichiers n'ont tout simplement pas, ou pas avec le niveau d'intégration de HAMMER.

L'historique à grain fin a un petit impact sur les performances et tend à dégrader plus spécialement les benchmarks que les vrais chiffres en production, parce que la maintenance se déroule sur une durée de 24 heures au lieu de se faire instantanément.

La prise d'empreinte (snapshotting) est incroyablement puissante. Comme elle est automatique, vous pouvez compter sur le fait que vous avez au moins les 60 derniers jours (la durée peut évidemment être changée) sous forme de snapshots. Il est trivial d'accéder à ces snapshots (un simple cd) si vous avez besoin de récupérer quelque chose ou pour faire une comparaison, ou pour tout autre raison.

Le mirroring en flux non mis en queue est aussi très puissant.

patrick_g : Pourquoi les autres BSD n'ont pas importé HAMMER dans leurs dépôts ?

Matt Dillon : C'est à eux de décider s'ils veulent le faire ou pas. De façon générale, les interactions du cache de tampon sont difficiles à porter.

patrick_g : Selon vous est-ce que DragonFlyBSD est encore loin de son but mythique d'un cluster avec une image système unique ?

Matt Dillon : C'est difficile à dire mais je pense qu'il nous reste environ deux ans de boulot. J'avais dit ça aussi, il y a deux ans. Le but continue d'être repoussé car nous choisissons d'améliorer les choses qui fonctionnent déjà, comme HAMMER.

patrick_g : Merci beaucoup Matt d'avoir répondu à mes questions.
Aller plus loin

	
DragonFlyBSD
(20 clics)

	
Les nouveautés de la version 2.6
(7 clics)

	
Les objectifs techniques de DragonFlyBSD
(15 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections13.png

