

Sortie de GCC 4.5

Posté par patrick_g (site web personnel) le 15 avril 2010 à 00:49.

Modéré par Mouns.

Étiquettes :

	objective-c

	opensuse

	fortran

	ada

	openoffice

	firefox

	lwn

[image: GNU]

La nouvelle version majeure du compilateur GCC du projet GNU vient de sortir.

Écrit à l'origine par Richard Stallman, le logiciel GCC (GNU Compiler Collection) est le compilateur de référence du monde du logiciel libre. Il accepte des codes source écrits en C, C++, Objective-C, Fortran, Java et Ada et fonctionne sur une multitude d'architectures.

Dans la suite de la dépêche, vous pourrez découvrir les nouveautés et les optimisations mises en œuvre dans cette version 4.5 de GCC ainsi qu'un entretien avec Basile Starynkevitch, employé par le CEA, développeur du greffon MELT et contributeur de GCC. Merci à lui pour avoir pris le temps de répondre à mes questions et merci également à Laurent Guerby pour sa relecture de la dépêche et pour ses suggestions.
[bookmark: sommaire]Le sommaire...

	Optimisation lors de l'édition des liens

	L'arrivée des greffons

	Questions/Réponses avec Basile Starynkevitch

	D'autres nouveautés de GCC 4.5 en bref

	Pour la suite

[bookmark: lto]Optimisation lors de l'édition des liens (↑)
Les étapes d'une compilation
Une grande nouveauté de GCC 4.5 est l'introduction de la technique d'optimisation lors de l'édition des liens (Link Time Optimization). Pour mieux comprendre de quoi il s'agit, il faut savoir que lors de la compilation d'un programme ce sont en fait plusieurs étapes qui se déroulent successivement.

Dans la première étape, la compilation proprement dite, GCC lit les fichiers sources compréhensibles par un humain, écrits par exemple en C, et transforme le source en une représentation intermédiaire nommée GIMPLE. Quand il est ainsi traduit, le code source est plus facile à optimiser. Une fois toutes les passes d'optimisation terminées, GCC va créer à partir de ces fichiers sources optimisés les fichiers correspondants contenant des instructions que seul le processeur peut comprendre. Ces fichiers en sortie sont nommés les "fichiers objet".

Lors de l'étape finale, nommée édition de liens, GCC va "combiner" entre eux tous ces fichiers objets pour faire un seul exécutable. C'est aussi dans la phase d'édition des liens que les appels de fonction de votre code sont remplacés par les instructions correspondantes qui viennent des fichiers pré-compilés d'une ou plusieurs bibliothèques.

On a donc le trajet suivant :

Fichiers de code source → Optimisation → Fichiers objet → Fichier unique exécutable.Une optimisation supplémentaire
Une fois ce rappel effectué on comprend mieux la motivation qui se cache derrière la fonction d'optimisation lors de l'édition des liens (LTO pour Link Time Optimization). Dans la procédure précédente vous avez noté que l'optimisation se fait avant la "fusion" des fichiers objets dans l'exécutable. Mais on peut penser que si le compilateur avait une idée globale du programme, de tous les fichiers sources à la fois, alors il pourrait sans doute trouver des optimisations supplémentaires par rapport à celles qu'il fait sur chaque fichier pris individuellement. Lors de l'édition des liens le compilateur a une visibilité parfaite sur toutes les fonctions et sur le flux de données complet et il est donc potentiellement intéressant d'ajouter une phase d'optimisation à ce stade.

Pour implémenter cette belle idée (qui existe sur d'autres compilateurs depuis plusieurs années) GCC 4.5 va lors de la compilation inscrire du code intermédiaire GIMPLE dans certaines sections spéciales du fichier objet (qui est donc un peu plus gros que d'habitude). De cette façon ce code GIMPLE peut être lu lors de l'étape finale d'édition des liens et servir à optimiser globalement le programme.

On a donc le trajet suivant :

Fichiers de code source → Optimisation → Fichiers objet → Optimisation → Fichier unique exécutable.Une flexibilité supplémentaire
En plus du gain prévisible en performances du fait de l'arrivée des optimisations globales il y a aussi un gain en flexibilité. Ainsi GCC 4.5 pourra, grâce à LTO, optimiser globalement un programme qui rassemble des fichiers sources écrits dans des langages différents (un fichier en C, un autre en C++ et un troisième en Fortran par exemple) :

gcc -c -O3 -flto fichier1.c (optimise le fichier individuel écrit en C).

g++ -c -O3 -flto fichier2.cc (optimise le fichier individuel écrit en C++)

gfortran -c -O3 -flto fichier3.f90 (optimise le fichier individuel écrit en Fortran)

g++ -o progfinal -flto -03 fichier1.o fichier2.o fichier3.o -lgfortran (optimise globalement le programme final).

Il est aussi possible d'optimiser différemment les fichiers individuels et le programme final :

gcc -c -Os -flto fichier1.c fichier2.c (optimise les fichiers individuels pour la taille).

gcc -o progfinal -flto -O3 fichier1.o fichier2.o (optimise le fichier final pour les performances).

Bien entendu l'optimisation finale, celle qui porte sur tous les fichiers à la fois, est susceptible d'utiliser une grande quantité de mémoire et de générer une forte charge processeur. C'est pour résoudre ce problème épineux qui menaçait de rendre la technique LTO impraticable que les développeurs ont proposé l'architecture WHOPR (WHOle Program OptimiseR).

On utilisera ainsi l'option -fwhopr au lieu de -flto et le changement est radical ! Avec -flto toutes les fonctions de tous les fichiers sont chargées en mémoire ce qui risque de la saturer. Avec -fwhopr on utilise le graphe des appels de fonction qui est d'abord analysé puis partitionné pour pouvoir être distribué entre les processeurs. Plus besoin de tout charger en mémoire en une seule fois puisque le travail à faire a été décomposé en unités plus petites.

Le projet WHOPR tente donc de paralléliser au maximum le travail et le fichier pdf de compte-rendu indique que le graphe d'appel des fonctions (call-graph) peut maintenant atteindre un million de nœuds et un million d'arêtes et néanmoins tenir en moins de 500 Mo de RAM.Le bilan
Alors quels sont les résultats de tout ce travail ? Et bien il faut bien dire que, si l'on en croit les tests publiés, la technique LTO est certes intéressante mais pas encore révolutionnaire. Le travail a commencé il y a bien longtemps (voir ce fichier pdf de 2005) mais le monde des compilateurs est notoirement complexe et les performances ne progressent que doucement. Certes l'infrastructure LTO est en place mais pour l'instant les passes spéciales d'optimisations globales sont encore rares et rudimentaires. En allant voir les chiffres bruts sur les machines de tests disponibles sur cette page nous pouvons voir (à la date du 12 avril) que les scores sont les suivants sur la machine Barbarella qui est un quadri-cœurs AMD :

Options de compilation : -O3 -funroll-loops -fpeel-loops -ffast-math -march=native

SPECfp2006 base : 9.6

Options de compilation : -O3 -funroll-loops -fpeel-loops -ffast-math -march=native -flto -fwhole-program

SPECfp2006 base : 10.5

Avec l'option -flto le score est donc quasi égal.

Options de compilation : -O3 -funroll-loops -fpeel-loops -ffast-math -march=native

SPECint2006 base : 10.8

Options de compilation : -O3 -funroll-loops -fpeel-loops -ffast-math -march=native -fwhopr -fwhole-program

SPECint2006 base : 18

Avec l'option -fwhopr (plus efficace que -flto sur les entiers) on voit un gain assez significatif du fait de l'optimisation globale.

J'ai posé par mail la question des performances aux administrateurs de la ferme de test GCC d'OpenSuse et voici la réponse de Richard Guenther :

"Bon le résultat encourageant c'est que ça fonctionne la plupart du temps ;)

Il y a aussi une réduction significative de la taille du code tout en ayant des performances égales ou même un peu meilleures.

Notez qu'aucun travail n'a encore été fait pour analyser ou trouver les optimisations manquantes. En conséquence c'est vrai que LTO dans GCC 4.5 est plus un aperçu et une base pour les développements ultérieurs".

[bookmark: greffons]L'arrivée des greffons (↑)
Pourquoi des greffons ?
La seconde grande nouveauté de GCC 4.5 est l'arrivée de la fonction d'ajout de greffons (ou plugins).

GCC est un compilateur multi plates-formes très puissant mais, au fil des années, son code est devenu complexe et intimidant (plus de 4 millions de lignes selon sloccount). L'ajout d'une fonction peut impliquer une réécriture d'une partie importante du code et cette situation n'est, on s'en doute, pas optimale. Un peu de modularité serait appréciable !

L'introduction des greffons semble donc une solution logique mais cette fonctionnalité n'a été accueillie que fort prudemment par la FSF (qui possède le copyright de GCC).

La Free Software Foundation a pour mission de promouvoir le logiciel libre et il était important de veiller à ce que les greffons de GCC ne puissent pas être utilisés pour retirer des libertés aux utilisateurs.

La Runtime Library Exception de GCC a donc été modifiée (le passage en GPLv3 est aussi une des raisons de cette modification) et l'architecture des greffons a pu entrer sans risque juridique dans le projet.

Comme l'a également souligné Basile Starynkevitch lors de la conférence Parinux du 12 janvier, les greffons sont nécessairement libres mais ils ne nécessitent pas d'attribution de copyright à la FSF. De nombreuses entreprises sont réticentes à signer les documents juridiques de la FSF d'attribution de copyright et on peut donc espérer que la possibilité d'écrire un greffon sans passer sous les fourches caudines de la FSF incitera plus d'entreprises à contribuer à l'écosystème du compilateur libre.

La mission des développeurs est également d'éviter les risques techniques et le travail a donc été très soigneux sur l'interface entre le corps de GCC et les différents greffons. Une comparaison détaillée des différentes interfaces envisageables a été effectuée et une API propre a été choisie.

La modification de l'architecture globale de GCC pour autoriser les greffons permet d'introduire une grande souplesse dans son architecture. Un ajout de fonction peut maintenant se faire avec une simple option -fplugin=MonGreffon.

Cela va charger la bibliothèque dynamique MonGreffon.so dans GCC et vous pourrez ensuite utiliser le greffon lors de vos compilations.Seulement un début
Nul doute que la flexibilité offerte par ce nouveau système modulaire va attirer de nouveaux développeurs et donc favoriser les innovations. La communauté du libre ne pourra qu'en bénéficier à long terme même si, bien entendu et comme pour la fonction LTO qui a été détaillée plus haut, l'histoire ne fait que commencer et il existe encore peu de greffons pour GCC.

Dans ce domaine on peut citer :

	Dehydra et Treehydra sont des greffons d'analyse statique du code développés par Mozilla pour ses besoins particuliers.

Une présentation pdf issue du sommet GCC 2008 est disponible et un article LWN a récemment été consacré à ces greffons.

	DragonEgg est un greffon qui remplace le frontal LLVM-GCC et sert donc à générer du code pour alimenter le compilateur libre concurrent LLVM.

	ICI (Interactive Compilation Interface) implémente une série de greffons issus du réseau académique HIPEAC comme par exemple des fonctions d'apprentissage automatique (voir le projet de recherche MILEPOST et ce fichier pdf explicatif).

	MELT (pour Middle End Lisp Translator) est un greffon écrit par Basile Starynkevitch et qui sert à implémenter des passes d'optimisation dans un langage de haut niveau proche de Lisp. On peut ainsi faire du prototypage rapide d'idées ayant vocation à rejoindre plus tard GCC ou bien on peut écrire des passes spécialisées pour des projets particuliers. La syntaxe de haut niveau facilite le travail par rapport à un greffon écrit en C.

Au sujet de MELT et de GCC en général j'ai posé quelques questions à Basile le 13 janvier dernier (donc bien avant la sortie de GCC 4.5 qui, à cette date, était seulement en période de freeze).

[bookmark: basile]Questions/Réponses avec Basile Starynkevitch (↑)

Ante-scriptum : les réponses ici n'engagent que moi et ne sont que mon opinion à moi, Basile Starynkevitch, pas celle de mon employeur, des financeurs de mon travail, de la communauté GCC, de la FSF, April ou toute autre organisation.

patrick_g : Quelles ont été les réactions envers MELT en particulier et les greffons en général (sur les listes de diffusion ou ailleurs) ? Est-ce une fonctionnalité très attendue de GCC ?

Basile : Je comprends la question comme concernant les réactions sur les listes GCC, pas seulement à mon exposé de mardi à Parinux.

Sur les greffons (plugins) de GCC 4.5 et le mécanisme de greffons en général, il y a trois sortes d'attitudes au sein de la communauté développant GCC :

 * La plupart ne se sentent pas concernés du tout. Les greffons n'intéressent pas la majorité des développeurs de GCC (et c'est à mon avis bien normal : une fois le mécanisme existant, ce sont des gens extérieurs à la communauté GCC qui développeront des greffons.

 * Quelques acteurs sont moteurs et contribuent ou ont contribué du code en rapport avec les greffons. En particulier plusieurs employés de Google travaillent activement à ce sujet, et aussi plusieurs personnes du secteur académique (INRIA) ou recherche appliquée (dont moi).

 * Quelques contributeurs à GCC expriment une franche hostilité au principe même des greffons dans GCC, en argumentant qu'ils introduisent une complexité supplémentaire (c'est très peu vrai) et qu'ils vont fragmenter, disperser et fragiliser la communauté (je parie que non).

Sur MELT en particulier, il y a généralement un silence bienveillant, et parfois une curiosité intéressée. J'ai probablement péché par manque de communication (mais son développement prend du temps). Je travaille sur un tutoriel (en plus des pages embryonnaires existantes). Pour que MELT ou tout autre greffon expérimental (TreeHydra, ICI, DragonEgg, ...) ait des utilisateurs externes, il faut que GCC 4.5 soit sorti (En pratique, les branches expérimentales de GCC sont peu utilisées, et même une version nouvelle de GCC met parfois plusieurs années à être adoptées par les développeurs : dans le monde de l'embarqué, certains utilisent encore une version de GCC d'il y a dix ans ; dans les systèmes Linux, on utilise souvent une version d'il y a plusieurs années !).

Sur les greffons eux-mêmes en général, il est beaucoup trop tôt pour mesurer une réaction; en effet, GCC 4.5 n'est pas encore sorti. En pratique, personne d'extérieur à la communauté n'a conscience de l'existence des greffons expérimentaux déjà prototypés (et dont on ne connait pas leur avenir, quand GCC 4.5 sera paru).

Par définition même des greffons, aucune passe interne à GCC ne les utilise ; c'est tout le contraire : un greffon ajoute (ou enlève, ou réordonne) des passes dans GCC. Les greffons sont totalement facultatifs et GCC 4.5 fonctionnera très bien – et même habituellement – sans aucun greffon chargé. Tout greffon doit être compilé pour une version spécifique de GCC. Ainsi, un greffon pour GCC 4.5.0 devra être recompilé pour tourner avec 4.5.1, et son code source devra sûrement être modifié pour le futur GCC 4.6.0.

Je pense et j'espère que les greffons auront du succès, en particulier parce que :

 1. (point mineur, mais pratiquement significatif) Un greffon doit être libre sous licence GPLv3 (ou compatible), mais ne doit pas nécessairement – au contraire du cœur de GCC – être sous copyright FSF (comme GCC l'est). Il est juridiquement beaucoup plus facile, quand on veut commencer à travailler dans GCC, de proposer un greffon que d'avoir préalablement obtenu l'autorisation de ce transfert de copyright, nécessaire même pour proposer un petit patch de cinq lignes à GCC.

 2. principalement, les greffons serviront, je l'espère, à ajouter dans GCC des traitements spécifiques à un logiciel particulier (compilé par GCC) : ces traitements spécifiques n'intégreront jamais le cœur de GCC.

patrick_g : Outre le greffon MELT lui-même est-ce qu'il existe déjà des passes qui l'utilisent afin d'apporter des fonctions ?

Basile : GCC 4.5 n'est pas encore sorti au 13 janvier 2010. Il n'y a donc actuellement aucun greffon de GCC utilisé réellement, et MELT ne sera pas immédiatement le greffon le plus populaire.

Je vais utiliser MELT (et continuer de l'améliorer) au sein du projet OpenGPU (projet de R&D multi-partenaire financé par appel d'offre étatique en France), où mon rôle sera de générer du code OpenCL (pour calculs numériques sur cartes graphiques) et d'aider à détecter le code qui pourrait y tourner.

MELT doit être vu comme un méga/méta-greffon de GCC. C'est pratiquement un outil pour coder des traitements spécifiques, qu'on pourrait péniblement coder comme des greffons directs de GCC en C, mais qu'on gagne à coder en MELT dans un module (MELT est un greffon de GCC qui traduit du code MELT en du code C, lui-même compilé en un module puis chargé par GCC/MELT).

Les traitements des greffons de GCC (ou des modules codés en MELT) seront spécifiques à un gros logiciel compilé par GCC (par exemple le noyau Linux, les environnements graphiques Qt/KDE ou GTK/Gnome, le serveur Apache et ses modules, le navigateur Firefox, les suites bureautiques Abiword ou OpenOffice.org, et tout autre gros logiciel sur lequel des efforts de génie logiciel, de méthodologie, d'outillage de développement sont bienvenus). Une entreprise (ou une communauté) développant un assez gros logiciel patrimonial (d'au moins plusieurs centaines de milliers de ligne de code source) devrait avoir une personne responsable de la méthodologie, de l'architecture, de l'outillage en génie logiciel, des règles de codages, et cette personne a intérêt à développer ou faire développer un greffon de GCC (par exemple un module de MELT). Les traitements spécifiques d'un greffon de GCC ou d'un module de MELT peuvent par exemple être :

 1. Des diagnostics spécifiques, par exemple simplement trouver les fonctions C qui font un fopen sans en tester le résultat, ou appellent gtk_calendar_freeze sans appeller gtk_calendar_thaw (je sais que ces fonctions sont obsolètes en GTK 2.14, mais c'est juste un exemple).

 2. Certaines optimisations spécifiques par exemple fprintf(stdout,....) peut être réécrit en printf(...) etc. On pourrait peut-être le faire de manière textuelle (en awk ou ed ou perl etc.) mais dans GCC, ça sera fait après inlining, ce qu'on ne pourrait pas faire en dehors de GCC.

 3. Validation du respect des règles de codage spécifiques.

 4. Aide à la rétro-ingénierie, refactoring et métriques, voire programmation par aspects (ajouter un test devant chaque appel à telle fonction dont le premier argument est non nul).

 5. Tout et n'importe quoi d'autre.

Il est important de noter qu'il faut être spécialiste du gros logiciel visé (GTK ou autre) pour définir et implémenter ce genre de traitement, qui étant spécifique à ce logiciel ne sera jamais au cœur de GCC. Il faut aussi comprendre un peu les internes de GCC, puis coder le greffon. MELT est alors utile : les difficultés liées à la complexité du logiciel visé et aux représentations internes de GCC demeurent, mais MELT facilite le codage d'un tel traitement en apportant des traits de haut niveau (filtrage ou pattern matching, programmation fonctionnelle, programmation objet), tout en collant et en s'adaptant à l'évolution de GCC. Un code MELT est bien plus concis que son équivalent en C : les 33KLOC du traducteur MELT sont traduits en 560KLOC de C généré.

Je suggère à des étudiants ambitieux ou à des libristes passionnés de contribuer de tels traitements spécifiques.

Je ne peux pas vous coder vos traitements spécifiques (il faut bien connaître le logiciel visé) mais je peux vous aider à apprendre et à utiliser MELT, peut-être même vous former un peu à MELT.

patrick_g : Pourquoi une syntaxe basée sur Lisp ? Si un contributeur veut implémenter une syntaxe alternative est-ce "facile" ?

Basile: Il existe des livres, une tradition (Emacs-Lisp, Guile, Scheme), des modes Emacs ou Vi... une puissance des macros autour de Lisp. Et la pauvreté de la syntaxe parenthésée de Lisp la rend facile car systématique. Je me rends compte qu'il y des gens allergiques aux parenthèses, et je suis en train de définir et d'implémenter une syntaxe infixe [inspirée par le style de Pascal, Javascript, Ocaml] d'un très large sous-ensemble de MELT pour ceux-ci. Si vous connaissez Lisp et êtes enthousiastes pour le faire à ma place dites le moi vite. Mais je ne pourrais développer ni mode Emacs, ni indenteur, ni pretty-printer pour les deux syntaxes (Lispienne ou infixe) de MELT. Toute aide est bienvenue.

patrick_g : Quel est l'avantage technique de faire, par exemple, de l'analyse statique de code dans un greffon GCC plutôt que dans un logiciel externe ?

Basile : Il existe d'excellents logiciels d'analyse statique, y compris en libre, par exemple Frama-C (LGPL, codé en Ocaml – qui peut en particulier prouver que le code C suit ses spécifications convenablement formalisée en ACSL dans des commentaires). Certains sont très puissants mais peuvent être difficiles à utiliser. De toutes manières, développer un outil d'analyse statique est très difficile, et juste l'utiliser n'est pas trivial.

L'avantage de coder un greffon dans GCC, c'est :

 * Une fois développé et installé, un greffon est très facile à utiliser; on ajoute -fplugin=greffon.so à ses drapeaux CFLAGS de compilation. Ça ne perturbe pas l'utilisateur.

 * Pour coder un greffon, on dispose de toute la puissance de GCC. En particulier, des représentations internes puissantes, des transformations déjà effectuées (optimisations). Un compilateur est avant tout un malaxeur de représentations internes (arborescentes ou en graphe parfois cyclique), ce n'est pas un transformateur textuel.

 * Pour des optimisations spécifiques à un logiciel, il faut travailler à l'intérieur de GCC.

 * Mais GCC est complexe. Il faut en comprendre (en partie) les représentations internes et les passes. Une fois qu'on a compris ces bases, MELT permet une plus grande productivité.

Par exemple, il est facile d'imaginer qu'une distribution Linux utilise des greffons de GCC. Il lui serait plus difficile d'utiliser un analyseur statique externe !

patrick_g : Comment est-ce que tu vois le projet LLVM/CLang ? Est-ce que GCC est menacé ?

Basile : LLVM est très intéressant, en particulier pour ceux qui veulent générer du code binaire dans leur application (c'est d'abord une bibliothèque C++ conçue pour ça). Clang est un compilateur C & C++ au dessus de LLVM. Pour l'instant, il est un peu moins performant (voir tests sur Phoronix). Mais GCC est un mastodonte (4MLOC), qui n'est pas encore prêt d'être détrôné et qui croît encore (30% de croissance en 2 ans).

je déplore d'ailleurs que des langages compilés de plus haut niveau soient aussi peu utilisés. En particulier, Ocaml comme Common Lisp sont des excellents langages (et ils seraient plus adaptés pour écrire un gros compilateur que ne l'est C ou C++).

GCC va exister encore longtemps. Beaucoup de logiciels (notamment le noyau Linux) en dépendent fortement. Je trouve la compétition (notamment avec LLVM) saine et bénéfique.

patrick_g : Qu'est-ce qui t'énerve particulièrement dans GCC ?

Basile : Comme dans toute grosse communauté logicielle, c'est la difficulté à faire approuver mes soumissions de patch. Aussi, son énormité, et le fait un peu paradoxal que beaucoup de ses contributeurs connaissent trop peu à mon goût les langages de programmation de haut niveau.

patrick_g : Si tu devenais demain le "dictateur bienveillant" du projet quels seraient tes changements ?

Basile : Je refuserais le poste. La fonction est impossible, c'est pour ça qu'il n'y en a pas. Tout code soumis dans GCC doit être revu par autrui. GCC montre qu'un gros logiciel peut être développé sans management fort. L'espèce humaine n'a pas les capacités de management que certains imaginent. Le développement de GCC est organique, il croit comme en embryon. C'est très bien comme ça.

Informations diverses :

MELT est disponible comme une branche, et sera un greffon dès l'apparition de GCC 4.5.

Je suis disposé à vous aider à coder vos modules en MELT pour les traitements spécifiques à vos applications. Mais je ne peux pas les coder à votre place.

patrick_g : Merci beaucoup pour tes réponses.

[bookmark: autre]D'autres nouveautés de GCC 4.5 en bref (↑)

	Le support de l'architecture Itanium1 (nom de code Merced) a été retiré de GCC 4.5. Non seulement le code compilé pour Itanium2 fonctionne correctement et devrait suffire à tous mais il est de plus fort probable que plus personne n'utilise aujourd'hui cette première génération d'Itanium qui fut fort décevante.

	Toujours coté support les processeurs de la famille Intel Atom ont maintenant leurs options d'optimisations spécifiques avec -march=atom et -mtune=atom. Une possibilité de différenciation qui s'ouvre pour les distributions Linux spécialisés dans les netbooks.

	Dans une autre catégorie de performances que les Atom, une autre catégorie de prix également, GCC 4.5 permet d'optimiser son code pour le surpuissant POWER7 d'IBM (-mcpu=power7 et -mtune=power7). Rappelons que le POWER7 est un processeur comprenant 8 cœurs quadri-threads cadencés à 4 GHz environ (avec un "modeste" cache L3 de 32 Mo intégré directement sur la puce !). Nous en reparlerons sans doute dans une future dépêche Top500 car la machine Blue Waters, 20 pétaflops en 2011, se basera sur ce monstre.

	Le projet Moxie visant à définir une nouvelle architecture virtuelle et qui est détaillé dans une série de messages sur ce blog est devenu un port officiel dans GCC 4.5. Moxie est une intéressante expérience puisque Anthony Green, son développeur, a essayé de créer un jeu d'instruction pour processeur, une ISA, qui soit adapté dès le départ aux exigences du compilateur (approche top-down) au lieu de commencer par le matériel et de se débrouiller ensuite comme on peut avec le compilateur (approche bottom-up).

	L'option -save-temps de GCC (qui conserve les fichiers intermédiaires du processus de compilation) accepte maintenant d'écrire ces fichiers dans un répertoire spécifié en option. Cela permet de lancer des compilations en parallèle sans risquer des collisions de noms lors des enregistrements des fichiers intermédiaires.

	L'option -fexcess-precision fait son entrée dans la longue liste des fonctions de GCC. Avec elle vous pourrez contrôler la gestion des arrondis sur les nombres flottants. Avec -fexcess-precision=fast on utilise la précision des registres du processeur alors qu'avec -fexcess-precision=standard on se conforme strictement à la norme ISO C99 (et le code est souvent plus lent).

	Après l'entrée de la bibliothèque de gestion des nombres flottants MPFR dans la version 4.3 c'est maintenant la bibliothèque de gestion des nombres complexes MPC qui arrive dans GCC 4.5 en tant que dépendance obligatoire. MPC va permettre d'éviter certains bugs d'arithmétique complexe et ce quelque soit la plate-forme sous-jacente.

	Sur les processeurs ARM le compilateur GCC 4.5 prend désormais en charge les nombres flottants en demi-précision (sur 16 bits au lieu de 32 pour le classique float). Ce format, défini dans la norme IEEE 754-2008 et utilisable avec le type __fp16, est utilisé pour des besoins d'économie lors du stockage de données et pas pour des calculs arithmétiques.

	Vous avez la mauvaise habitude de faire des goto en C sans penser à initialiser vos variables ? GCC 4.5 a pensé à vous et l'utilisation de l'option -Wjump-misses-init générera désormais un avertissement si vous persistez dans vos exécrables pratiques. Bien entendu, et comme son nom l'indique, il suffira d'utiliser le très sévère -Wall pour profiter de cette surveillance renforcée.

	De manière générale un gros travail a été effectué sur les avertissements émis par GCC 4.5 concernant le code C qui sont plus nombreux et plus complets. On peut citer par exemple l'option -Wc++-compat (elle alerte sur le code ne faisant pas partie du sous-ensemble commun entre le C et le C++) et qui vérifie maintenant bien plus de choses.

	Après le ralliement d'AMD au nouveau jeu d'instruction vectoriel 256 bits AVX d'Intel à la place de son extension SSE5 il restait quand même quelques instructions orphelines. Ces malheureuses n'avaient pu trouver refuge dans AVX et AMD a donc dû les extraire d'un SSE5 mort-né pour en faire simplement des instructions complémentaires d'AVX. Avec GCC 4.5 il est donc possible d'utiliser dès maintenant dans vos compilations l'option -mfma4 (une multiplication et une addition en un seul cycle) et l'option -mxop (diverses rotations et permutations de vecteurs). Ces jeux d'instructions, ainsi que l'option -mlwp qui propose des fonctions de profilage (LightWeight Profiling), seront disponibles dans les futurs processeurs AMD de la famille Bulldozer.

	Le support des versions modernes du langage Fortran s'améliore, que ce soit coté Fortran 2003 ou bien Fortran 2008, et on note de nombreuses nouvelles fonctions. Par exemple le début du support du polymorphisme et plus généralement du paradigme orienté objet dans gfortran ou encore l'usage d'arguments complexes avec les fonctions TAN, SINH, COSH, TANH, ASIN, ACOS, etc.

	En ce qui concerne la prise en charge de la future norme ISO C++0x, le travail avance comme à chaque version et GCC 4.5 renforce encore la compatibilité avec ce nouveau standard. Les nouvelles fonctions de ce C++ rénové sont activables avec -std=c++0x et les progrès peuvent être suivis sur la page spéciale consacrée à C++0x du site GCC.

	L'instanciation des templates C++ se fait maintenant avec une table de hachage pour gagner en rapidité de compilation. Auparavant le temps de compilation était en progression quadratique alors que maintenant la progression n'est plus que linéaire. GCC 4.5 rejoint ainsi sur ce point le compilateur LLVM/Clang et on ne verra plus des comportements pathologiques tels que celui-ci.

	La détection des débordements de pile dans les programmes écrits en langage Ada est maintenant fonctionnelle avec GCC 4.5. Dans certains cas spécifiques la détection peut laisser passer le débordement potentiel mais un avertissement est quand même émis lors de la compilation, ce qui permet d'alerter le programmeur.

	Le processeur LatticeMicro32, qui est une puce programmable simplifiée de type FPGA, devient un port officiel dans GCC 4.5. Ce cœur RISC est utilisé notamment dans le SoC (System-on-Chip) sous licence GPL du projet Milkymist évoqué dans le numéro 124 de GNU/Linux Magazine France. A noter que c'est le créateur du projet Milkymist, Sébastien Bourdeauducq, qui a fait la demande d'inclusion du port sur la liste de diffusion de GCC.

	Sur la lancée de GCC 4.4, qui améliorait significativement la prise en charge de l'architecture MIPS, cette nouvelle version du compilateur du projet GNU ajoute elle aussi beaucoup de choses. On retrouve la gestion du processeur MIPS 1004K (multicœur et multithread), la possibilité d'optimiser séparément les modes 32 et 64 bits, la meilleure gestion des caches, la possibilité de transformer des appels indirects pour les rendre plus rapides, l'optimisation du code généré spécifiquement pour les processeurs Octeon, la meilleure prise en charge des fonctions servant à la gestion des interruptions, etc. Au chapitre sécurité on note que le support de la commande -fstack-protector, qui permet de contrer les attaques par débordement de la pile, est maintenant disponible sur MIPS.

	Avec cette nouvelle version 4.5 les fichiers d'en-têtes (headers) qui sont appelés dans un #include et qui ne sont pas trouvés lors de la compilation entraînent un arrêt immédiat de GCC. On évite ainsi la litanie des messages d'erreurs successifs que cela entraînait auparavant.

	La fonction de parallélisation des boucles de code, activable avec -ftree-parallelize-loops, est désormais utilisable par l'infrastructure d'optimisation Graphite (détaillée dans la dépêche sur GCC 4.4). Pour profiter simultanément de l'optimisation Graphite et de la parallélisation de boucles il faut passer l'option -floop-parallelize-all au compilateur.

	Plus généralement si on veut avoir une vue sur les différentes optimisations génériques disponibles dans GCC on pourra utiliser avec profit la commande "gcc -Q --help=optimizers -O1". Cette commande, introduite dans la version 4.3, permet ici de lister toutes les passes d'optimisation de code qui sont activées au niveau -01. Dans le fichier pdf de présentation GCC de Laurent Guerby (voir cette dépêche LinuxFr) vous verrez qu'on peut s'amuser à compter ces optimisations de version en version.

Un "gcc -Q --help=optimizers -O1|wc -l" donne ainsi environ 140 lignes pour GCC 4.3, 160 pour la 4.4 et environ 180 pour la version 4.5.

[bookmark: suite]Pour la suite (↑)

Le compte rendu complet du sommet annuel GCC 2009 permet d'avoir un aperçu du travail en cours sur le compilateur libre et de s'informer à l'avance sur les nouveautés qui arriveront dans les futures versions. Les articles (très techniques) au format PDF sont disponibles à cette adresse.

On y trouve notamment l'utilisation d'un outil graphique spécifique qui permet de faciliter l'écriture des greffons pour GCC (The visual development of GCC Plug-ins with GDE) ainsi que plusieurs articles sur les diverses stratégies d'optimisations du code (Optimization opportunities based on the polyhedral model in GRAPHITE et Interprocedural optimizations of function parameters).

Enfin, comme dans le compte-rendu de l'an dernier, on relève un article (Automatic Streamization in GCC) sur la très intéressante stratégie de "streamisation" qui consiste à optimiser un programme séquentiel pour qu'il s'exécute efficacement sur un processeur multicœurs...une technique d'avenir !
Aller plus loin

	
Les nouveautés de GCC 4.5
(43 clics)

	
Optimisation de l'édition des liens
(15 clics)

	
Les greffons de GCC
(25 clics)

	
Le greffon MELT
(14 clics)

	
DLFP: Sortie de GCC 4.4
(37 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections18.png

