

Sortie de GHC 8.2.1

Posté par Guillaum (site web personnel) le 07 août 2017 à 11:52.
Édité par Davy Defaud, Benoît Sibaud, Snark, BAud, Yves Bourguignon, ZeroHeure, gipoisson, palm123, Nÿco, Sytoka Modon, octachron et Pierre Jarillon.
Modéré par patrick_g.
Licence CC By‑SA.

Étiquettes :

	ghc

	haskell

[image: Programmation fonctionnelle]

Une nouvelle version majeure du compilateur GHC pour Haskell est sortie.

[image: GHC]

Cette dépêche présente rapidement le langage Haskell, puis les nouveautés de la version 8.2.1 qui vient de sortir. En fin de dépêche, un exemple plus complet d’un code Haskell est présenté afin de motiver à l’usage de ce langage.

Sommaire

	Présentation d’Haskell et de GHC

	
Changements
	Performance

	Join points

	Compact regions

	Types somme unpacked

	NUMA

	Meilleure gestion du format DWARF

	BackPack

	Stratégie de dérivation

	Amélioration du typage dynamique

	Overloaded record fields

	Un meilleur support du polymorphisme « levity »

	Exhaustivité des patterns

	L’écosystème

	
Le futur
	Typage dépendant

	
Typage linéaire
	Sécurité et modélisation

	Performance

	
Exemple de Haskell : le dîner des philosophes
	Introduction

	STM et Haskell

	Exemple d’exécution

	
Implémentation
	Prélude

	Fourchettes

	Philosophes

	Vie d’un philosophe

	forkPhilosopher

	main

	Conclusion

Présentation d’Haskell et de GHC

Haskell est un langage de programmation fonctionnelle. Je vous invite à lire la dépêche de la sortie de GHC 8.0.1 qui réalise une présentation plus complète du langage.

Une reformulation de la page de présentation du langage pourrait être la suivante :

	Haskell est un langage statiquement typé, chaque expression a un type qui est déterminé à la compilation et le compilateur s’assure que l’assemblage d’expressions a un sens ; ceci permet de fournir quelques garanties sur le programme, mais cela permet aussi beaucoup d’expressivité.

	Haskell est un langage au typage inféré, cela signifie que tous les avantages du typage statique viennent gratuitement, sans devoir écrire de déclaration complexe de type ;

	Haskell est purement fonctionnel, c’est un des langages (sans parler des langages dérivés d’Haskell ou d’un de ses ancêtres, Miranda, purement fonctionnel et à évaluation paresseuse) qui a cette propriété où, de façon simplifiée, les effets de bords apparaissent explicitement ;

	Haskell est concurrent, GHC, son compilateur le plus connu propose des primitives efficaces pour la concurrence et est capable d’exploiter tous les cœurs de calcul d’une machine ;

	Haskell est rapide : dans certains cas, on peut approcher les performances de langages comme C++ ;

	Haskell est paresseux, c’est un des rares langages à ma connaissance ayant cette caractéristique ;

	Haskell vient avec de nombreux paquets pour de nombreuses applications.

À mon avis, Haskell / GHC est un outil intéressant à regarder, car il est un des rares langages « grand public » à proposer certaines fonctionnalités, comme la séparation explicite des effets de bord ou l’évaluation paresseuse. En outre, Haskell propose un système de type très puissant permettant de modéliser son domaine de travail de façon élégante. Il s’agit d’un outil capable dans beaucoup de domaines, allant du Web au HPC, proposant de très bonnes performances et une sécurité accrue.

Changements

Comme d’habitude, de nombreux bogues et autres subtilités ont été réglés. J’ai essayé de résumer dans cette section les points que je trouve intéressants dans les notes de mise à jour.

Mon changement préféré est que le compilateur affiche maintenant ses messages d’erreur avec de la couleur et un petit symbole montrant la zone de l’erreur.

Performance

Un des gros apports de cette 8.2.1 concerne la performance du compilateur qui est annoncé comme plus rapide, mais les notes de versions sont pauvres d’informations à ce sujet.

De nombreux points visant les performances du code exécuté ont été traités, certains sont discutés dans les points suivants.

Join points

Les « join points » sont décrits sur le wiki et dans cette vidéo de Simon Peyton Jones : Compiling without continuations.

Il s’agit d’une optimisation permettant de détecter plus de code sujet à être transformé en appel récursif terminal, ceci permettant une réduction non négligeable des allocations, puisqu’un appel récursif terminal se résume à peu de choses près à un saut dans le programme.

Compact regions

Un des gros reproches faits à la gestion de mémoire par ramasse‐miettes est le temps que peuvent prendre les phases de collection de mémoire. Dans le cas d’Haskell, l’implémentation choisie est en mode « stop the world », dit autrement, tout s’arrête pendant la phase de récupération de la mémoire. Cette phase peut être longue car toute la mémoire utilisée par le processus doit être scannée pour mettre à jour la liste des objets vivants ou morts, et ceci peut introduire des pauses peu acceptables dans certains contextes temps réel.

GHC 8.2 propose les compact regions qui sont des espaces de stockage d’objets qui ne font pas référence à d’autres objets en dehors de cet espace. Ainsi le ramasse‐miettes peut ignorer cet espace pendant sa phase de parcours de la mémoire pour un gain de temps proportionnel à la quantité de mémoire qui n’a pas été parcourue.

Point intéressant, une région compacte peut être sérialisée sur le disque de façon efficace.

Types somme unpacked

La représentation en mémoire d’un objet hiérarchique en Haskell dans GHC est composée de nombreuses indirections de pointeurs qui consomment de la mémoire et coûtent cher en performance du fait de l’absence de localité et d’un stress supplémentaire sur le ramasse‐miettes.

Le travail sur l’extension UnpackedSumTypes permet de représenter plus efficacement les types somme (c.‐à‐d. les enums).

NUMA

Des optimisations pour les architectures NUMA sont en place. Pour rappel, les architectures NUMA ont des zones de la mémoire qui sont privilégiées par certains cœurs de calcul. Ainsi, il est plus efficace d’allouer la mémoire nécessaire pour un cœur dans une zone proche de celui‐ci.

Meilleure gestion du format DWARF

Le format DWARF est utilisé par de nombreux outils de débogage ou d’analyse de performance comme gdb, valgrind, perf. L’amélioration de sa gestion permet, entre autres, une meilleure prise en charge de ces outils.

Pour information, perf est un outil qui permet de faire du profilage statistique de tout programme. Au lieu d’instrumenter le code pour compter très précisément les appels de fonctions, ce que pourrait faire un compilateur, perf se contente de regarder l’état du programme à différents instants.

Cette méthode de profilage a de nombreux avantages. Elle ne nécessite pas de recompiler le code source pour ajouter l’instrumentation et, ainsi, elle ne modifie pas l’exécution du programme. Les résultats sont plus pertinents qu’une méthode avec instrumentation car celle‐ci peut avoir un coût qui biaise les résultats. Elle permet aussi de lancer le profilage sur un programme qui s’exécute déjà.

Malheureusement, GHC génère des programmes avec un modèle d’exécution bien différent de ceux des langages plus traditionnels, d’où la difficulté d’utiliser ces outils. La page du wiki GHC sur DWARF détaille ces problématiques et les améliorations réalisées dans GHC 8.2.

BackPack

BackPack vise à proposer un système de modules plus puissant.

On rappelle qu’en Haskell il existe une quantité impressionnante de types pouvant représenter une chaîne de caractères :

	
String, qui n’est autre qu’une liste chaînée de caractères Unicode ([Char]) ; celle‐ci est déconseillée pour la gestion de vraies chaînes de caractères du fait du coût en mémoire et des performances associées aux listes chaînées ;

	
Text, qui est une représentation compacte de chaînes Unicode ; performante, elle est cependant critiquée par son choix d’encodage interne — UTF-16 — du fait du surcoût en mémoire comparé à de l’UFT-8 ; ce type vient en version stricte et paresseuse ;

	
ByteString, qui est une représentation compacte de suite d’octets. Utilisée principalement pour les interactions binaires, elle vient en version stricte et paresseuse ;

	les Foundation String qui se veulent une alternative au Text en utilisant le codage interne en UTF-8.

Il en existe sûrement d’autres.

Bref, c’est la jungle, car chaque type a son utilité en fonction de ses besoins en traitement correct des caractères, en traitement binaire, en évaluation paresseuse ou stricte.

Avant BackPack, faire un module gérant les différents types de chaîne de caractères disponibles dans Haskell revenait à devoir faire autant de modules que d’implémentations à gérer… Bonjour la duplication de code.

Grâce à BackPack, les modules peuvent être paramétrés par une interface de type, permettant une implémentation générique du module. C’est très similaire aux modules paramétrés d’OCaml.

Stratégie de dérivation

Haskell propose un mécanisme de dérivation de comportement automatique. Par exemple :

data Vector = Vector {
 x :: Float,
 y :: Float,
 z :: Float
 } deriving (Show, Eq)

Crée une classe Vector, représentant un triplet de flottants. La clause deriving permet au compilateur d’écrire automatiquement les fonctions d’affichage des égalités, par exemple :

>>> v = Vector 1 2 3
>>> v
Vector {x = 1.0, y = 2.0, z = 3.0}
>>> v2 = Vector 4 5 6
>>> v == v2
False
>>> v == v
True

On peut aussi imaginer dériver automatiquement les comportements de séralisation, hash, conversion avec JSON…

Ce mécanisme a évolué au cours de la vie de Haskell, au départ il permettait de ne dériver que certains comportements fixes proposés par le compilateur. Ensuite, de nouveaux comportements ont été ajoutés. Puis, il est devenu possible pour un utilisateur de proposer son propre système pour dériver automatiquement des comportements. Du fait de la profusion de mécanismes de dérivation, certains cas sont devenus ambigus.

GHC 8.2 fait un peu le ménage en proposant DerivingStrategies qui permet de choisir explicitement la stratégie à utiliser. Cet article résume le problème et démontre la solution.

Amélioration du typage dynamique

Haskell est un langage au typage statique. À ce titre, il prend en charge bien évidemment la notion de typage dynamique par le biais du module Data.Dynamic.

On peut encapsuler n’importe quel type dans un type Dynamic. Mais, pour le récupérer, il faudra explicitement fournir le bon type :

Prelude Data.Dynamic> a = toDyn "Hello"
Prelude Data.Dynamic> b = toDyn True
Prelude Data.Dynamic> :type a
a :: Dynamic
Prelude Data.Dynamic> :type b
b :: Dynamic
Prelude Data.Dynamic> (fromDynamic a) :: Maybe String
Just "Hello"
Prelude Data.Dynamic> (fromDynamic a) :: Maybe Bool
Nothing
Prelude Data.Dynamic> (fromDynamic b) :: Maybe String
Nothing
Prelude Data.Dynamic> (fromDynamic b) :: Maybe Bool
Just True

GHC 8.2 apporte l’implémentation du papier A reflection on types de Simon Peyton Jones, Stephanie Weirich, Richard A. Eisenberg et Dimitrios Vytiniotis, détaillé dans une vidéo de SPJ. Ces changements ne seront pas forcément visibles pour un utilisateur final, mais ils simplifient et sécurisent l’implémentation de bibliothèques comme Dynamic en remplaçant un bricolage (un cast) par une opération garantie par le compilateur.

Overloaded record fields

La situation des record, c.‐à‐d. des structures avec des champs nommés, n’est pas parfaite en Haskell.

Depuis GHC 8.0, beaucoup de travail est fait à ce sujet, notamment avec l’arrivée des extensions suivantes :

	
DuplicateRecordField, qui permet de définir dans le même module deux types avec des noms de champs égaux ;

	
OverloadedLabels, qui permet de définir des étiquettes, syntaxiquement #foo qui seront surchargées en fonction du type.

GHC 8.2 va un peu plus loin et propose la classe HasField qui permet d’extraire un champ d’un record de façon polymorphique. Par exemple, getField @"x" v permet d’extraire le champ x de v quel que soit le type de v.

Notez que GHC 8.2 est incompatible avec le code de OverloadedLabels de GHC 8.2 et qu’il faudra adapter son code.

Un meilleur support du polymorphisme « levity »

Cf. Richard A. Eisenberg — Levity Polymorphism (en anglais).

En Haskell (et dans de nombreux autres langages), il existe des objets « boxés » et des objets non « boxés ». Par exemple, un Int# est représenté par un entier machine sur 64 bits, alors qu’un Int est représenté par un pointeur de constructeur, que l’on pourrait assimiler à une étiquette de type, et par un Int# ; tout cela pour deux fois plus de mémoire.

Généralement, on n’utilise pas les types « non boxés » et le compilateur optimise cela comme il peut. Cependant, quand les performances sont attendues, il peut être intéressant d’écrire du code sur des types non « boxés » et, à un moment, il devient important de pouvoir écrire des fonctions polymorphiques travaillant aussi bien sur des types « boxés » que « non boxés ».

Exhaustivité des patterns

Le nouveau pragma COMPLETE permet de forcer l’exhaustivité des motifs (patterns).

Par défaut, chaque type crée aussi un pattern utilisable pour construire et déconstruire le type :

data Point = Point Float Float deriving (Show)

isOrigin (Point 0 0) = True
isOrigin _ = False

getX (Point x _) = x

translate (Point x y) (dx,dy) = Point (x + dx) (y + dy)

Il est cependant possible de créer ses propres patterns pour créer de nouvelles façons de construire et déconstruire ses types :

{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE PatternSynonyms #-}

pattern PolarPoint r phi <- (\ (Point x y) -> (sqrt (x*x+y*y), atan2 y x)) -> (r, phi) where
 PolarPoint r phi = Point (r * cos phi) (r * sin phi

Ici, je crée un pattern PolarPoint r phi qui représente un point en coordonnées polaires. On peut s’en servir autant pour créer que pour détruire :

> PolarPoint 10 0
Point 10.0 0.0
> PolarPoint 10 (pi / 2)
Point (-4.371139e-7) 10.0
> PolarPoint r angle = Point 2 2
> r
2.8284271247461903
> angle
0.7853981633974483

Cependant, avant GHC 8.2, le compilateur râlait sur les fonctions utilisant ce pattern :

-- | Retourne `True` si le point est plus loin qu'un rayon de 10
isFar :: Point -> Bool
isFar (PolarPoint r _) = r > 10

Polar.hs:18:1: warning: [-Wincomplete-patterns]
 Pattern match(es) are non-exhaustive
 In an equation for ‘isFar’: Patterns not matched: _
 |
18 | isFar (PolarPoint r _) = r > 10
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

En effet, le compilateur ne peut pas prouver tous les cas de figure des patterns, ce qui se traduit par beaucoup de faux positifs dans lesquels les vrais positifs sont cachés, rendant cette fonctionnalité peu utilisable.

Depuis GHC 8.2, l’utilisateur peut fournir une directive de compilation {-# COMPLETE PolarPoint #-} permettant de spécifier que le pattern PolarPoint couvre tous les cas de figure.

L’écosystème

Stack est un outil de gestion de dépendance pour Haskell. Il peut sous‐traiter à Nix pour les dépendances non Haskell, permettant ainsi la compilation dans un environnement contrôlé. Pour faire simple, un programme Haskell peut être compilé en une seule ligne de commande stack build sans devoir se préoccuper de l’installation de dépendances.

L’utilisation de Stackage qui fournit des instantanés de paquets versionnés garantit qu’un programme compilé il y a quelques mois le sera dans les mêmes conditions.

Stack a gagné dernièrement une nouvelle commande script qui permet d’exécuter un programme Haskell comme un script en installant les dépendances listées dans le script lui‐même. Nous verrons un cas d’usage dans la section d’exemples plus loin.

Le futur

Haskell (et GHC) évolue constamment. Cette section liste quelques projets excitants pour l’avenir.

Typage dépendant

Cet article de blog détaille le travail sur les types dépendants en Haskell qui devrait arriver plus ou moins rapidement, l’auteur parlant de GHC 8.6.

Les types dépendants permettent d’enrichir le système de types afin de garantir plus de choses.

Pour expliciter cela, nous allons traiter un petit problème de multiplication de matrices.

Soit un type Matrice qui pourrait être représenté comme suit en Haskell :

data Matrice = Matrice {
 nLignes :: Int,
 nColonnes :: Int,
 donnée :: (... structure non détaillée ...)
}

Le produit matriciel est une opération classique d’algèbre qui s’effectue entre deux matrices et renvoie une nouvelle matrice. Cependant, il y a une contrainte entre la taille des matrices d’entrée et le résultat de la matrice de sortie. Une matrice de taille (m, n) ne peut être multipliée que par une matrice de taille (n, p) pour obtenir une matrice de taille (m, p).

Bien souvent, cette contrainte est assurée par une vérification à l’exécution :

produitMatrice :: Matrice -> Matrice -> Matrice
produitMatrice (Matrice m n dataA) (Matrice n' p dataB)
 | n == n' = (Matrice m p (... calcul non détaillé ...))
 | otherwise = error "Pas les bonnes tailles"

Il est à l’heure actuelle possible en Haskell de spécifier ces tailles directement dans le type, de la manière suivante :

data Matrice nLignes nColonnes = Matrice {
 donnée :: (... structure non détaillée ...)
 }

Donnant ainsi le produit suivant :

produitMatrice :: Matrice m n -> Matrice n p -> Matrice m p
produitMatrice (Matrice dataA) (Matrice dataB) = Matrice (... calcul non détaillé ...)

Cette approche force le compilateur à vérifier que les tailles de nos matrices sont correctes pendant la compilation, ce qui supprime totalement toute une classe d’erreur à l’exécution.

Justin Le a rédigé une très bonne série d’articles qui traite de l’état actuel du typage dépendant en Haskell en implémentant un réseau de neurones multi‐couche.

Une des limitations de cette approche est que les tailles des réseaux de neurones ou des matrices de notre exemple, doivent être connues intégralement à la compilation, empêchant l’écriture d’un outil pouvant charger depuis le disque une matrice de taille quelconque.

Dans la seconde partie de son article, Justin Le parle de ce problème et montre les solutions existantes pour réaliser ce type d’opérations. On peut donc écrire une fonction de chargement de matrice depuis le disque avec des tailles statiques :

chargerMatrice :: Filename -> IO (Matrice n m)

Je ne détaillerai pas la solution, c’est, à mon avis, lourd et rébarbatif. Le travaille sur le typage dépendant qui est en cours dans GHC vise à simplifier cela.

Typage linéaire

Le typage linéaire devrait arriver sous peu dans GHC. Ce travail est en grande partie réalisé par une société française, tweag.io. Donc, cocorico ! ;) On note leur publication sur les types linéaires et leur premier article de Blog expliquant le projet.

Les types linéaires apportent à la fois un potentiel de performance, de sécurité et de modélisation.

Pour simplifier, c’est une façon de dire qu’une valeur ne sera utilisée qu’une et une seule fois. Je ne rentrerai pas dans les détails de son implémentation en Haskell puisque c’est tout nouveau et que les choses peuvent beaucoup bouger, je me contenterai de donner deux exemples de problématiques que les types linéaires peuvent résoudre.

Sécurité et modélisation

Cet article de blog détaille ce point, l’exemple qui suit est similaire.

Quand on utilise des sockets, on peut faire de nombreuses actions en fonction de l’état du socket, qui sont résumées dans le graphe suivant :

Non initialisée ——bind()—→ En attente ——listen()—→ En écoute
 \ /
 \ accept()
 \——connect()—→ Envoyer / Recevoir <==========/

Ici, une flèche simple représente un changement d’état du socket. Et la flèche <=== représente le fait que la fonction accept() retourne un nouveau socket directement dans l’état d’envoi et de réception de message.

À chaque état est associé une liste d’opérations possibles. Par exemple, recv() et send() ne sont possibles que dans l’état de transfert.

On pourrait modéliser ces états par des types différents :

data NonInitSocket = NonInitSocket Int
data AttenteSocket = AttenteSocket Int
data EcouteSocket = EcouteSocket Int

data TransfertSocket = TransfertSocket Int

L’Int représentant le descripteur de fichier bas niveau du socket.

Et à cela s’ajoutent des fonctions :

create :: IO NonInitSocket

bind :: NonInitSocket -> Addr -> IO AttenteSocket
listen :: AttenteSocket -> Int -> IO EcouteSocket
connect :: NonInitSocket -> Addr -> IO TransfertSocket

accept :: EcouteSocket -> IO TransfertSocket
send :: TransfertSocket -> String -> IO ()
recv :: TransfertSocket -> Int -> IO String
closeEcoute :: EcouteSocket -> IO ()
closeTransfert :: TransfertSocket -> IO ()

Les IO matérialisant que chacune de ces fonctions réalise des effets de bord.

Et, là, tout est beau dans le meilleur des mondes, on ne peut pas exécuter une fonction qui n’a pas de sens sur un socket qui n’est pas dans le bon état.

Sauf que si !… Observons le code suivant :

fonctionBugée = do
 s <- create

 attenteSocket <- bind s anAddr
 ecouteSocket <- listen attenteSocket 3

 ...

 transfertSocket <- connect s anotherAddr

Ici l’on voit qu’on se sert deux fois de s, ce qui est faux puisque à ce moment le descripteur de socket qui est stocké dans s correspond à une socket en état d’écoute.

On remarque aussi qu’on ne ferme jamais nos sockets.

Les types linéaires peuvent ici nous sauver en refusant à la compilation le second usage de s. De même, la compilation pourrait refuser ce code qui n’utilise pas ecouteSocket ni transfertSocket, la seule façon de les utiliser étant de les fermer. Ainsi, les types linéaires permettent de détecter à la compilation des mauvais usages de ressources.

Performance

Haskell est un langage où l’on maximise la non‐mutabilité. Ainsi, on va préférer créer une nouvelle structure de données plutôt que d’en modifier une. Haskell tire profit de cette non‐mutabilité pour partager au maximum les parties communes entre plusieurs données.

S’il existe des structures non mutables performantes (à lire, c'est très instructif), ce n’est pas le cas de toutes les structures. Ainsi, un vecteur n’est pas du tout adapté à la non‐mutabilité, car il faut recopier intégralement celui‐ci en cas de modification d’une unique case.

Une des premières choses qui vient à l’esprit c’est que si personne d’autre n’utilise la donnée, on pourrait la modifier sans scrupule. Cette information n’est cependant pas connue à la compilation et serait trop coûteuse à calculer lors de l’exécution.

Les types linéaires permettent de garantir que notre valeur ne sera utilisée qu’une seule fois, sous peine de refuser de compiler. Cette information en main, une bibliothèque pourra proposer des fonctions optimisées avec mutation pour remplacer les fonctions qui copient. Et cela sans faire apparaître de mutation dans le code utilisateur.

Exemple de Haskell : le dîner des philosophes

La fin de cette dépêche est consacrée à un exemple de résolution d’un problème en Haskell. Merci à jiehong de m’avoir soufflé l’idée de présenter la mémoire transactionnelle.

Introduction

Nous allons nous intéresser au problème des philosophes. Il s’agit d’un problème classique de programmation concurrente qui brille autant par son énoncé trivial que par le nombre de problématiques d’implémentation qu’il soulève.

À une table ronde d’un restaurant italien, des philosophes discutent en mangeant. Chaque philosophe a à sa droite et sa gauche une fourchette, qu’il partage avec son voisin de droite et de gauche.

Pour manger, un philosophe doit prendre les deux fourchettes, il pourra ensuite manger pendant un laps de temps variable, puis reposera les fourchettes. Cependant, en prenant les fourchettes, il empêche son voisin de droite et de gauche de manger.

Le problème est donc d’ordonnancer le repas des philosophes en évitant des situations d’interblocage courantes telles que :

	des « dead locks », où un philosophe sera en attente d’une fourchette prise par un autre philosophe lui‐même en attente d’une autre fourchette. On peut imaginer une situation où tous les philosophes sont bloqués de cette manière ;

	des « live locks », où les fourchettes changent de main en permanence, mais sans que personne ne puisse manger.

Une solution simple à ce problème consiste en l’usage d’un verrou global. Chaque philosophe désirant manger va tenter de prendre le verrou global et, une fois celui‐ci verrouillé, il prendra ses deux fourchettes si et seulement si les deux sont disponibles. Cette solution est triviale à implémenter, mais ne passe pas à l’échelle, car elle séquence toutes les opérations de prise ou de dépose des fourchettes. Il faut donc employer une stratégie plus fine.

Il existe de nombreuses solutions à ce problème, nombreuses sont complexes à implémenter et imposent une grande rigueur. Par exemple, en s’assurant de ne toujours prendre et rendre les verrous que dans le même ordre, on s’assure théoriquement qu’il n’y a pas d’interblocage. Par exemple, si un philosophe s’assure de prendre la fourchette gauche avant la droite. Mais, il y a le cas du dernier philosophe de la table qui doit prendre sa fourchette droite avant la gauche, la fourchette droite étant en fait la première de la table. Bref, vous l’aurez compris, ce n’est pas trivial.

Dans cet exemple de code Haskell, nous présenterons une solution utilisant les primitives de STM, Software Transactional Memory, Mémoire transactionnelle logicielle. Cette technique offre de nombreux avantages, en termes de facilité de programmation et de composition du code.

STM et Haskell

En Haskell, nous pouvons créer une zone de mémoire modifiable par STM grâce à la fonction newTMVarIO. Cette zone contiendra ou pas une valeur. Grâce à putTMVar, nous pouvons mettre une valeur dans la zone. takeTMVar vide la zone et renvoie la valeur. Cette opération est bloquante.

Nous pouvons représenter une fourchette par une TMVar () contenant simplement un (). On aurait pu mettre n’importe quoi dedans, la seule chose nous intéressant étant de savoir si la valeur est dedans ou non.

On peut composer ensemble un certain nombre d’opérations sur des TMVar et exécuter atomiquement le bloc grâce à atomically.

Les STM divergent d’une stratégie plus classique à base de mutex par :

	des opérations sont composables. On peut créer une action plus complexe à partir d’un ensemble de petits actions. Bien évidemment, plus l’action est complexe, plus la transaction a des chances d’échouer et de devoir recommencer ;

	les opérations atomiques ont une granularité très fine car elles ne « verrouillent » que les variables impliquées dans la transaction. Ainsi, on peut facilement imaginer modifier une structure de données en plusieurs points par plusieurs fils d’exécution sans qu’il n’y ait de conflit.

Exemple d’exécution

Pour exécuter le programme, nous ferons appel à stack qui, après installation des bibliothèques nécessaires, va utiliser GHC en mode interprété, ce programme ne demandant pas de performance particulière.

Le programme prend en paramètre le nombre de philosophes autour de la table. Chaque philosophe est nommé par une lettre. Quand celui‐ci commence à manger, la console affichera une lettre majuscule, quand il s’arrête, elle affichera une lettre minuscule. Les philosophes essayent de manger pendant 30 secondes.

Avec deux philosophes, on est en situation où seulement l’un peut manger :

$./Philosopher.hs 2
AaBbAaBbAaBbAaBbA

Avec trois philosophes, seulement un peut manger :

$./Philosopher.hs 3
AaBbCcAaBbCcA

Avec quatre, c’est plus intéressant. Les philosophes ne peuvent manger ensemble que par groupes de 2, c’est‐à‐dire soit A et C, soit B et D. Ainsi, pour changer de groupe, il faut que les deux philosophes du même groupe arrêtent de manger en même temps. L’implémentation fait manger les philosophes pendant un temps aléatoire compris entre 0 et 2 secondes et ils se reposent pendant 100 ms avant de recommencer à essayer de prendre les fourchettes. Ainsi, le moment ou les deux philosophes d’un groupe viennent de s’arrêter de manger ensemble est assez rare :

$./Philosopher.hs 4
ACcCaAcCaAcCaAcCcaBDdDdDbBdDbdACcaBDdDbB
----------------| ICI

Avec plusieurs philosophes, c’est bien plus drôle :

$./Philosopher.hs 10
ACEGIcgCGcCgGcaBiJjIeDgFbAiHdChIfGEgGeiEcICaAcCaAeiEIicICgGiIaAeEeEcCgGiIaAeEicICcCigH

Implémentation

Cette section détaille une solution en Haskell à ce problème. Des paragraphes d’explications s’intercalent entre les blocs de code qui peuvent être copiés‐collés en tant que tels dans un fichier Philosopher.hs.

Prélude

On commence par le Shebang décrivant l’interpréteur à utiliser. Ici stack. La ligne suivante liste les paquetages nécessaires pour ce fichier, à savoir stm pour l’usage de la mémoire transactionnelle, random pour générer des nombres aléatoires et optparse-generic pour lire la ligne de commande.

#!/usr/bin/env stack
-- stack script --resolver lts-9.0 --package "stm random optparse-generic"
{-# LANGUAGE OverloadedStrings #-}

Viennent l’importation des modules nécessaires pour notre code. J’ai choisi d’importer de façon qualifiée chaque fonction afin que le lecteur puisse connaître sa provenance.

module Main where

import Control.Monad (replicateM, forever)
import Control.Concurrent.STM (TMVar, putTMVar, takeTMVar, newTMVarIO, STM, atomically)
import Control.Concurrent (forkIO, killThread, threadDelay, ThreadId)
import System.Random (randomRIO)
import Data.Char (toLower)
import Options.Generic (getRecord)

Fourchettes

La gestion des fourchettes. En premier lieu, le type Fork qui représente une fourchette. Celui‐ci contient un TMVar (), c’est‐à‐dire un conteneur STM qui peut contenir un (), c’est‐à‐dire « rien ». Mais on peut connaître la présence ou l’absence de ce rien et c’est ce qui nous intéressera.

data Fork = Fork (TMVar ())

takeFork et releaseFork respectivement prennent et reposent une fourchette. takeFork sera bloquant. On note au type des fonctions que ces opérations s’effectuent sous le contrôle de la STM.

-- | Prend une fourchette. Bloquant.
takeFork :: Fork -> STM ()
takeFork (Fork var) = takeTMVar var

-- | Repose une fourchette. Non Bloquant.
releaseFork :: Fork -> STM ()
releaseFork (Fork var) = putTMVar var ()

La création d’une fourchette avec mkFork implique la création d’une TMVar avec newTMVarIO :

-- | Crée une fourchette
mkFork :: IO Fork
mkFork = do
 var <- newTMVarIO ()
 pure (Fork var)

Ce morceau de code implique énormément de choses sur Haskell, nous allons nous y attarder un moment. Le type de la fonction est IO Fork, c’est une action d’entrée‐sortie qui renvoie une fourchette. La première ligne réalise une action newTMVarIO () qui crée une nouvelle TMVar contenant un (). Celle‐ci est stockée dans var. Il ne s’agit pas d’une égalité, mais d’une affectation ; ici, var est bien le résultat de l’exécution d’une action et non pas une égalité qui serait représentée avec le signe =.

La valeur de retour de la fonction est Fork var c’est‐à‐dire la TMVar encapsulée dans le type Fork. Cette expression Fork var, de type Fork, ne représente pas une action à effet de bord, ainsi elle ne peut pas être la valeur finale de la fonction (qui est de type IO Fork). Il faut donc encapsuler de nouveau le Fork dans une IO et cela est fait grâce à la fonction pure.

Ne vous en formalisez pas trop, c’est surprenant au début, mais on s’y fait vite.

La création de n fourchettes se fait grâce à la fonction replicateM qui réplique l’action mkFork et donc renvoie une liste de Fork. Le M ici signifie que l’on réplique une action. Sinon, on pourrait écrire replicate 3 True == [True, True, True] sans le M car True n’est pas une action.

-- | `mkForks n` crée une liste de `n` `Fork` disponibles
mkForks :: Int -> IO [Fork]
mkForks n = replicateM n mkFork

Philosophes

Un philosophe est simplement une structure qui comprend un nom, sous la forme d’un Char, et deux Fork :

-- | Un `Philosopher` est représenté par son nom et deux fourchettes
data Philosopher = Philosopher Char Fork Fork

La création de plusieurs philosophes se servant de fourchettes est la suivante :

-- | Crée le nombre de philosophes associés aux fourchettes
mkPhilosophers :: [Fork] -> [Philosopher]
mkPhilosophers forks = zipWith3 Philosopher ['A'..] forks (last forks : forks)

Cette fonction est très concise mais complexe. Nous avons une liste de fourchettes (pour simplifier [fork0, fork1, fork2]) et nous voulons créer une liste de philosophes, chacun associé à une lettre et à deux fourchettes.

On aimerait la liste suivante : [Philosopher 'A' fork0 fork2, Philosopher 'B' fork1 fork0, Philosopher 'C' fork2 fork1].

Un motif apparaît, on voit qu’il s’agit de la fonction Philosopher appliquée à 3 arguments pris respectivement dans 3 listes distinctes grâce à la fonction zipWith3 :

	
['A', 'B', 'C'], que nous représentons ici avec la liste infinie ['A' ..] ;

	
[fork0, fork1, fork2], c’est tout simplement forks ;

	
[fork2, fork0, fork1], qui est ici (last forks : forks).

Cela fonctionne car zipWith3 ne consomme qu’en fonction de la longueur de la liste la plus courte.

Vie d’un philosophe

Une étape de la vie d’un philosophe est une fonction assez longue, mais peu complexe. La prise et la relâche des fourchettes est réalisée dans un bloc atomically, le reste n’étant que des attentes et un peu d’affichage.

-- | Un `Philosopher` essaye de manger.
runPhilosopher :: Philosopher -> IO ()
runPhilosopher (Philosopher name forkA forkB) = do
 -- Prends les fourchettes de façon atomique, garantie par STM
 atomically $ do
 takeFork forkA
 takeFork forkB

 -- Affiche son nom en majuscules
 putChar name

 -- Mange pendant un temps aléatoire compris entre 0 et 2 secondes
 time <- randomRIO (0, 2 * 1000 * 1000)
 threadDelay time

 -- Affiche la fin du repas (nom en minuscule)
 putChar (toLower name)

 -- Repose les fourchettes de façon atomique
 atomically $ do
 releaseFork forkA
 releaseFork forkB

 -- Attend avant de recommencer pendant 100 ms
 threadDelay (1000 * 100)

forkPhilosopher

Cette fonction, pour un philosophe donné p, crée un green thread qui exécute en boucle infinie grâce à forever une étape de la vie de notre philosophe.

forkPhilosopher :: Philosopher -> IO ThreadId
forkPhilosopher p = forkIO (forever (runPhilosopher p))

main

Le main contient un peu de logique pour lire la ligne de commande et crée les philosophes :

main :: IO ()
main = do
 -- Lit le nombre de philosophes sur la ligne de commande
 nPhilosopher <- getRecord "Philosopher"

 -- Crée les fourchettes et les philosophes
 forks <- mkForks nPhilosopher
 let philosophers = mkPhilosophers forks

 -- Crée les fils d’exécution par philosophe
 tIds <- mapM forkPhilosopher philosophers

 -- Attend 10 secondes et tue les fils d’exécution
 threadDelay (1000 * 1000 * 10)
 mapM_ killThread tIds

Quelques points à discuter dans cette fonction main. En premier lieu, j’utilise getRecord pour lire la ligne de commande. Cette fonction, du module optparse-generic, est capable de créer toute seule une interface ligne de commande en fonction du type de retour demandé, ici un Int, en gérant automatiquement la lecture de la ligne de commande, la validation des arguments et l’affichage de l’aide, si nécessaire. Cela m’a économisé trois lignes de logique pour lire les arguments, vérifier qu’il y en avait au moins un et le convertir en Int, et afficher une erreur le cas échéant. Ce n’était pas forcement nécessaire dans ce contexte, mais cela devient extraordinaire avec une interface plus complexe impliquant des arguments optionnels, des drapeaux booléens, ou autres.

La création des fourchettes est une opération avec effets de bord, d’où l’affectation du résultat avec <-. La création des philosophes, elle, ne réalise pas d’effet de bord, c’est une fonction pure, d’où l’égalité = qui signifie réellement que philosophers est sémantiquement équivalent à mkPhilosopher forks dans les lignes qui suivent. C’est un outil de compréhension de code que je trouve plaisant.

Pour finir, la création des fils d’exécution se fait avec mapM, qui va appliquer la fonction forkPhilosopher à chaque philosophe et renvoyer l’identifiant du fil d’exécution créé.

Conclusion

GHC 8.2 c’est sympa, il y a plein de nouvelles fonctionnalités qui rendent heureux un développeur Haskell régulier. Mais, soyons réaliste, ce ne sont pas ces nouvelles fonctionnalités qui vont vous motiver à utiliser Haskell, c’est pourquoi j’ai essayé de présenter un cas concret d’utilisation du langage sur un problème assez classique d’algorithmie.

Aller plus loin

	
DLFP : Sortie de GHC 8.0.2 et une petite histoire de typage statique
(259 clics)

	
[ANNOUNCE] GHC 8.2.1 release candidate 1
(102 clics)

	
[ANNOUNCE] GHC 8.2.1 release candidate 2
(96 clics)

	
[ANNOUNCE] GHC 8.2.1 release candidate 3 available
(87 clics)

	
[ANNOUNCE] GHC 8.2.1 available
(96 clics)

	
Notes de version de la 8.2.1
(129 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/4cd65347efaed280e9020e7d6ab44dc93f869579f40e5feb6a9edfc9.png
The Glasgow Haskell Compiler

EPUB/imagessections94.png

