

Sortie de git 2.9

Posté par Lucas le 22 juin 2016 à 12:28.
Édité par M5oul, Matthieu Moy, Nairwolf, palm123 et Yves Bourguignon.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	git

	gestionnaire_de_version

	linus_torvalds

	sortie_version

[image: Gestion de versions]

git 2.9 est sorti le 13 juin 2016. Pour rappel, git est un gestionnaire de version décentralisé, originellement développé par Linus Torvalds pour versionner les sources du noyau Linux. Depuis, ce gestionnaire de version est devenu très populaire parmi les projets open-source, comme en témoigne le succès des plateformes basées sur cet outil, comme GitHub ou Gitlab, ainsi que les projets de toutes tailles auto-hébergés utilisant git.

Dans cette dépêche nous nous proposons de revenir sur quelques-uns des changements apportés par cette version.

[image: Git logo]

Sommaire

	
Améliorations de la commande diff
	Lisibilité des diff

	Renommages et diff

	Amélioration de la commande log

	Amélioration de la commande tag

	Tester chaque commit lors d’un rebase

	Amélioration de la commande merge

	
Améliorations dans la gestion des sous-modules
	Parallélisation

	Migration de code

	Amélioration de la commande describe

Améliorations de la commande diff

Lisibilité des diff

La relecture de diff est parfois rendue fastidieuse par leur côté asémantique. Le véritable changement introduit par un commit, comme par exemple l’ajout d’un bloc de code, n’apparaît pas clairement dans un diff représenté ainsi :

 function exemple (tab) {

 tab.forEach(element => {
+ action1(element);
+ });
+
+ tab.forEach(element => {
 action2(element);
 });

Cette nouvelle version améliore le rendu des diff en rendant leur détection et coloration plus intelligentes (par détection des lignes vides). L’exemple précédent devient ainsi :

 function exemple (tab) {

+ tab.forEach(element => {
+ action1(element);
+ });
+
 tab.forEach(element => {
 action2(element);
 });

Cette fonctionnalité s’active avec l’option --compaction-heuristic ou avec la configuration diff.compactionHeuristic. Cette fonctionnalité est toutefois encore expérimentale.

Pour rappel dans les versions précédentes de git, dans certains cas, les diff pouvaient être plus clairs et générer moins de conflits par l’utilisation de l’algorithme patience via l’option --patience ; cette possibilité est toujours présente.

Renommages et diff

Une autre amélioration apportée par cette version est la détection des renommages par la commande diff qui se fait désormais par défaut. Le comportement peut être configuré via la clé diff.renames.

Amélioration de la commande log

Le format de sortie de la commande git log expanse désormais les tabulations en affichant le message de commit. En effet, git log affiche ce message avec une indentation de quatre espaces, ce qui cassait l'affichage des messages utilisant les tabulations pour l'alignement. Il est possible d'utiliser l'option --no-expand-tabs pour désactiver ce comportement.

Amélioration de la commande tag

git tag peut désormais créer un tag annoté sans utiliser explicitement l'option -a (ou -s) lorsqu’un message d’étiquetage est donné. Une nouvelle clé de configuration tag.forceSigneAnnotated peut être utilisée pour que la commande crée un tag signé dans cette situation.

Tester chaque commit lors d’un rebase

Pendant un rebase interactif git rebase -i il était déjà possible d’exécuter une commande entre deux commits en ajoutant une ligne avec le préfixe x ou exec puis la commande. On pouvait insérer une telle ligne après chaque commit avec par exemple :

$ git rebase -i --exec "make test"

Cela ouvre plusieurs possibilités, comme lancer un jeu de tests sur chaque commit pour corriger plusieurs défauts (là où un bisect devrait être utilisé pour chaque défaut), compiler le code pour vérifier la syntaxe ou encore lancer du linting et améliorer la qualité du code ; le rebase est mis en pause si la commande utilisée renvoie une erreur. Un git rebase --continue reprend l’opération à tout moment.

L'option --exec (ou -x) est maintenant utilisable sans spécifier explicitement -i, ce qui permet d'économiser quelques caractères sur la commande et évite de lancer inutilement l'éditeur de texte.

Amélioration de la commande merge

Avant cette nouvelle version, la commande git merge permettait par défaut de fusionner deux branches sans aucune base commune dans leurs historiques respectifs. Ce comportement par défaut créait un historique parallèle dans le projet qui fusionnait une branche d’un autre projet, faisant grossir de manière inutile l’historique du projet. Le comportement par défaut a été changé dans cette version afin de ne pas autoriser la fusion de deux branches sans rapport. Bien sûr il est toujours possible de l’autoriser via l’option --allow-unrelated-histories dans les rares cas où ce comportement est souhaité.

Cette option a aussi été ajoutée à la commande git pull afin d’être passée au merge sous-jacent.

Améliorations dans la gestion des sous-modules

Parallélisation

Dans la version précédente, la possibilité de récupérer les sous-modules en parallèle avait été ajoutée via l’option --jobs=<n> lors d’un fetch. Dans cette version, cette possibilité a été étendue aux opérations de clonage et de mise à jour. Si vous souhaitez toujours paralléliser ces opérations sur les sous-modules, cela se configure via la clé submodule.fetchJobs.

Migration de code

Afin de profiter de ce nouveau framework de parallélisation, la majeure partie du code de submodule update a été migrée en C. D’autres parties de code concernant les sous-modules ont aussi été portées en C. La logique des commandes git submodule était précédemment écrite en script shell.

Amélioration de la commande describe

La commande git describe --contains, qui donne une description d’un commit par sa position relative au tag le plus proche qui le contient, a tendance à générer un nom quelque peu sibyllin et surtout difficile à expliquer. La sortie de cette commande est composée de deux parties :

	le tag le plus proche contenant le commit ;

	le nombre de commit pour l’atteindre.

Ce qui ressemble généralement à cette sortie : my-tag~13. Le problème de l’ancien comportement est que si un proche descendant du commit a été récemment taggé, alors ce nouveau tag est pris comme référence dans la sortie de la commande, à la place du tag le plus ancien qui le contenait. Dans cette version, le comportement a été revu afin d’être plus clair à interpréter. Cette commande retourne donc maintenant « la description d’un commit par rapport au tag le plus ancien (chronologiquement) qui le contient ».

Par exemple, la révision aed06b9 (qui est utilisée dans le rapport de bug à l’origine du changement) du noyau Linux était auparavant décrite comme v4.6-rc1~9^2~792, ce qui est correct au sens où cette révision est bien l’ancêtre au 792e degré du deuxième parent de l’ancêtre au 9e degré du tag v4.6-rc1, mais trompeur, car cette révision est en réalité très ancienne et la description incluant v4.6-rc1 laissait entendre que le commit avait été introduit juste avant la version 4.6-rc1. Avec Git 2.9, le résultat est v3.13-rc1~65^2^2~42, et effectivement v3.13-rc1 est le plus ancien tag postérieur à la révision.

Aller plus loin

	
Notes de version
(258 clics)

	
Site officiel de git
(151 clics)

	
Annonce sur GitHub
(67 clics)

	
Journal de l’annonce sur LinuxFR
(115 clics)

	
Article sur Makina Corpus
(111 clics)

	
Git Rev News : la lettre de la communauté Git
(70 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b0c2bc65b314ed4fec24b2f7f885442e399d4c04e75b288988af6b2a.png
g1t

EPUB/imagessections81.png

