

Sortie de Haxe 3.2.0

Posté par David Mouton (site web personnel) le 17 juin 2015 à 23:18.
Édité par palm123, Benoît Sibaud et tuiu pol.
Modéré par tuiu pol.
Licence CC By‑SA.

Étiquettes :

	franglais

	haxe

	langage

	développement

	programmation

	mobile

	web

[image: Technologie]

Haxe est un langage de programmation orienté objet, open source, basé sur un système de classes comme C# ou Java.

Il permet de mettre en place des types abstraits, des metadatas, des Generics, des Enums, ou encore faire de la programmation fonctionnelle comme en F#.

C’est une solution robuste, multi-paradigme, parfaitement adaptée au développement d’applications web, au jeu et au mobile.

[image: Logo Haxe]

Il y a quelques jours, la version 3.2.0 est sortie avec son lot de nouveautés et de corrections.

Cette dépêche présente les principaux changements et profite de l'occasion pour refaire un tour des possibilités offertes par ce langage.

Sommaire

	
Haxe
	Un peu d'histoire

	Le langage

	Le compilateur

	Pour quoi faire ?

	
Les nouveautés de la 3.2.0
	Python

	Rest, EitherType, @:selfCall and @:callable

	Typed Arrays

	Compiler.addGlobalMetadata

	NodeJS support

Haxe

Un peu d'histoire

Le développement de Haxe a été commencé fin 2005 par Nicolas Cannasse alors qu'il travaillait pour Motion Twin, un éditeur de jeu indépendant.

Haxe a toujours été open source mais en 2013, la gouvernance du projet est offerte à la fondation Haxe.

Cette année, il va donc fêter ses 10 ans.

Le langage

Haxe est un langage de programmation moderne, capable de tenir la comparaison avec du C# ou du Java, en matière de fonctionnalités.

Sa syntaxe est également très proche de ces derniers mais rappelle également le JavaScript.

class HelloWorld {
 static public function main() {
 trace("Hello World");
 }
 }

Voici une petite liste des possibilités offertes par le langage :

	Classes, Types(Strict ou dynamique), Interfaces et Héritages

	les Abstract Types : utiles pour exemple pour étendre un type primitif et surcharger ses opérateurs.
On peut imaginer ainsi créer les types Kilomètre, Mètre, et Millimètre, et faire des opérations comme 12500mm / 10km

 abstract Kilometer(Float) {
 public function new(v:Float) this = v;
 }

 abstract Mile(Float) {
 public function new(v:Float) this = v;
 @:to public inline function toKilometer():Kilometer return (new Kilometer(this / 0.62137));
 }

 class Test {
 static var km:Kilometer;
 static function main(){
 var one100Miles = new Mile(100);
 km = one100Miles;

 trace(km); // 160.935
 }
 }

	Structures anonymes

 var point = { x: 0, y: 10 };
 point.x += 10;

	Enums, Accesseurs, programmation fonctionnelle, et inférence de type

	Pattern Matching, Inlining, Array Comprehension, Compilation conditionnelle

	Generics, Type Parameters, Constraints et Variance :

class Main<A:B> {
 static function main() {
 new Main<String>("foo");
 new Main(12); // use type inference
 }

 function new(a:A) { }
}

	
Les macros : sans doute l'une des plus puissantes fonctionnalités de Haxe. Elles permettent de "programmer" le comportement du compilateur.
[image: macros]

Le compilateur

Haxe n'est pas un langage propre à une technologie comme Java avec la JVM. Son compilateur (ou transpileur) va convertir le Haxe dans un autre langage. Aujourd'hui il supporte le JavaScript, le PHP, le C++, le C#, le Java, l'AS3, Neko, et le Python.

Il ne s'agit absolument pas d'une solution pour faire du cross-plateforme, mais bien de remplacer un langage par un autre. Il n'est pas (directement) possible de compiler un même code pour du Java et du PHP par exemple.

Un framework open source basé sur Haxe existe pour faire du cross-plateforme, c'est OpenFL.

Le compilateur est très rapide, un sentiment qui se renforce si on a l'habitude de compiler du Java ou du Dart.

Sur le code généré, il se montre particulièrement efficace. Il profite de la compilation pour nettoyer et optimiser le code. C'est particulièrement notable par rapport à du JavaScript.
[image: decoding time]

Pour quoi faire ?

Utiliser Haxe à la place d'un autre langage peut apporter beaucoup de choses. TypeScript, Dart, ou encore CoffeeScript font la même chose pour JavaScript, et Scala et Groovy pour Java.

Haxe permet également de profiter d'un même langage coté client et coté serveur, de partager les mêmes objets et de s'affranchir d'un contrat d'interface.

Par contre il ne dispense pas de connaitre la technologie pour laquelle on compile. Il est important de connaitre le PHP, pour faire du Haxe pour PHP.

Enfin Haxe permet de profiter d'un même langage sur des typologies de projets différentes comme par exemple JS/PHP, ou Android/NodeJS , etc…

Qui fait du Haxe ?

Le jeu vidéo est le premier domaine où brille ce langage. Que ce soit pour du jeu web, mobile, ou desktop.

Sa présence au Ludum Dare est notable.

L'utilisation d'OpenFL pour faire des jeux cross plateforme favorise son adoption. OpenFL va prochainement exporter pour XBox PS4 et WiiU.
[image: OpenFL 3]

Sans surprise, le développement d'application web est également un domaine propice à l'utilisation de Haxe.

Les nouveautés de la 3.2.0

Après la sortie de la version majeure 3.0.0, cette nouvelle version est surtout focalisée sur la correction de bugs et la robustesse.

Python

La grosse nouveauté c'est le support de Python 3.

En Haxe :

package;

class Main {

 static function main() {
 for (projectile in ['apples', 'oranges']) trace('I threw $projectile!');
 }

}

En Python :

class Main:

 @staticmethod
 def main():
 _g = 0
 _g1 = ["apples", "oranges"]
 while (_g < len(_g1)):
 projectile = (_g1[_g] if _g >= 0 and _g < len(_g1) else None)
 _g = (_g + 1)
 print(str((("I threw " + ("null" if projectile is None else projectile)) + "!")))

class python_internal_ArrayImpl:

 @staticmethod
 def _get(x,idx):
 if ((idx > -1) and ((idx < len(x)))):
 return x[idx]
 else:
 return None

class HxOverrides:

 @staticmethod
 def stringOrNull(s):
 if (s is None):
 return "null"
 else:
 return s

Main.main()

Rest, EitherType, @:selfCall and @:callable

La gestion des "external type definitions" est améliorée avec l'ajout de deux types haxe.extern.Rest et haxe.extern.EitherType, et aussi deux nouveaux "metadata", @:selfCall and @:callable.

Typed Arrays

Haxe 3.2.0 ajoute le support cross-plateforme des Typed Arrays dont l’implémentation a été fortement inspirée par celle de Javascript.

Compiler.addGlobalMetadata

Pour ceux qui utilisent les macros, Compiler.addGlobalMetadata permet d'attacher un metadata à n'importe quel type ou méthode qui n'a pas été traité par le compilateur.

NodeJS support

L'extern type definitions de NodeJS est maintenant directement supporté par la Foundation Haxe.

Pour une liste complète il y a le changelog.

Aller plus loin

	
Le site officiel de Haxe
(670 clics)

	
Les sources sur Github
(131 clics)

	
Pour essayer Haxe en ligne
(239 clics)

	
Le Changelog
(124 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/100c35f390c3588ec18f7bc1dba7bf9c976a27019b9f3200fa46dcba.png
OpenFL 3 Architecture

Haxe OpenFL

EPUB/61e581eca7b5c60cde1e072e86f47bf866b978af343a3118419fbeab.png
+ Expression
+ Complex Type
+ haxe.macro.Expr

+ Typed Expression

- Type
+ haxemacroType

transform

generate :

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b79e5b05777136d8323174d0c7ec435c6f65ac99f3ed384499ae22fd.png
time inms

Native G+ [5a
Fashin Chrome [T 57
Flash i Frefox [T 5
Fasnin [5g
asmis in Chrome [T s
asmis inFrefox [43
B e ———————————————]

15 from Haxe in Chrome [52
35 from Haxe in Firefox [49
35 from Haxe n [T 62
35 from Dart in Chrome [60
38 fromDart i Firefox [70
35 fromDartin [a5

Darton Dartvy [y

EPUB/b5d21b8009e550163b03e6fdcd380adad92c22fb7fc0d03f2b38c402.png

EPUB/imagessections50.png

