

Sortie de la version 0.1 de Rust


Posté par Bruno Michel (site web personnel) le 22 janvier 2012 à 13:37.
Édité par claudex et Lucas Bonnet.
Modéré par baud123.
Licence CC By‑SA.

Étiquettes :

	programmation

	langage

	rust











[image: Rust]



Mozilla a annoncé le 20 janvier la sortie de la version 0.1 du compilateur pour Rust, sous une licence de type MIT. Rust est un langage de programmation système fortement typé. L'accent est mis sur la sûreté des accès mémoire et la concurrence. Il fonctionne actuellement sur les plateformes GNU/Linux, OSX et Windows.


Voici un exemple d'Hello World :


use std;
import std::io;

fn main() {
    for i in [1, 2, 3] {
        io::println(#fmt("hello %d\n", i));
    }
}


Rust est un langage proche de Go, il partage d'ailleurs une inspiration commune venant de Newsqueak, Alef et Limbo. Toutefois, les développeurs de Rust ont commencé leur travail avant l'annonce de Go et ne sont pas satisfaits par la sémantique adoptée par Go (état partagé mutable, Ramasse-miettes global, pointeurs NULL, absence de destructeurs).


Plus d'informations en seconde partie.


Syntaxe


Rust est un langage dont la syntaxe peut faire penser au C. Mais Rust n'est pas juste une évolution du C, sa sémantique est réellement différente sur de nombreux aspects.


Notons quelques différences avec le C : les types viennent après l'identifiant, les parenthèses sont optionnelles pour les conditions des if, while et for, et tout ce qui n'est pas une déclaration est une expression :


// is_four est une fonction qui prend un entier et renvoie un booléen
fn is_four(x: int) -> bool { x == 4 }

// On peut assigner le retour d'if à une variable car c'est une expression
let x = if the_stars_align() { 4 }
        else if something_else() { 3 }
        else { 0 };

Chaînes de caractères


Par défaut, les chaînes de caractères sont en UTF-8. Et de manière très traditionnelle, elles s'écrivent avec des guillemets doubles :


let s = "Une chaîne";

Typage


Il y aurait beaucoup à dire sur le typage dans Rust. Je vous invite donc à consulter le tutoriel à ce sujet. Je vais essayer de juste présenter l'essentiel.


Le typage est statique. Les types de base sont () (avec juste la valeur nulle), bool (deux valeurs possibles : true et false), les entiers (int, uint, etc.) les flotants (float, f32, f64), les caractères (char) et les chaînes (str). Ces types de base peuvent ensuite être composés dans des types composites : vecteurs ([T]), vecteurs mutables ([mutable T]), tuples ((T1, T2)), enregistrements ({field1: T1, field2: T2}), fonctions (fn(arg1: T1, arg2: T2) -> T3) et pointeurs (@T, ~T, *T). Il est également possible de créer de nouveau type avec le mot-clé type :


type monster_size = uint;


Les variables locales bénéficient de l'inférence de types (leur type peut être omis, le compilateur saura le déduire) :


// Le compilateur saura deviner le type de ce vecteur
let x = [];
// On peut aussi être explicite
let y: [int] = [];


Rust possède également la notion de types génériques :


fn map<T, U>(v: [T], f: fn(T) -> U) -> [U] {
    let acc = [];
    for elt in v { acc += [f(elt)]; }
    ret acc;
}

Pattern Matching


Juste pour le plaisir, un petit exemple de pattern matching :


alt my_number {
  0       { std::io::println("zero"); }
  1 | 2   { std::io::println("one or two"); }
  3 to 10 { std::io::println("three to ten"); }
  _       { std::io::println("something else"); }
}

Modules


L'espace de noms de Rust est séparé en modules. Chaque fichier source commence son propre module. Il est aussi possible d'avoir des modules locaux.

Interfaces


Les interfaces sont le moyen de faire le polymorphisme en Rust. Elles se déclarent avec le mot-clé iface et les implémentations avec impl :


iface to_str {
    fn to_str() -> str;
}

impl of to_str for int {
    fn to_str() -> str { int::to_str(self, 10u) }
}
impl of to_str for str {
    fn to_str() -> str { self }
}

Tâches


L'approche utilisée pour la concurrence en Rust est les tâches (tasks) et est similaire à de nombreux systèmes d'acteurs. Les tâches se lancent avec spawn, ne partagent aucune donnée et communiquent entre elles via des ports et canaux :


let port = comm::port::<int>();
let chan = comm::chan::<int>(port);
let child_task = task::spawn {||
    let result = some_expensive_computation();
    comm::send(chan, result);
};
some_other_expensive_computation();
let result = comm::recv(port);

Tests


Rust permet d'écrire des tests directement dans le code, en les annotant avec #[test] :


use std;

fn twice(x: int) -> int { x + x }

#[test]
fn test_twice() {
    let i = -100;
    while i < 100 {
        assert twice(i) == 2 * i;
        i += 1;
    }
}

Ramasse-miettes


La mémoire est libérée à l'aide d'un ramasse-miettes. Celui-ci est capable de travailler sur une seule tâche à la fois, évitant le problème du « bloquer le monde » pendant qu'il se lance.


Aller plus loin


	
Le site officiel de Rust
(327 clics)


	
L'annonce de la version 0.1
(37 clics)


	
Le code source de Rust
(40 clics)


	
Le tutoriel
(106 clics)









EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/imagessections97.png





