

Sortie de la version 0.6.0 du configurateur de FPGA openFPGALoader

Posté par martoni (site web personnel, Mastodon) le 17 décembre 2021 à 18:24.
Édité par Yves Bourguignon, palm123, gwenhael goavec-merou, claudex, Benoît Sibaud et patrick_g.
Modéré par Pierre Jarillon.
Licence CC By‑SA.

Étiquettes :

	open_hardware

	fpga

	open_fpga_platform

[image: Matériel]

openFPGALoader est un utilitaire en ligne de commande, écrit en C++ et sous licence Apache 2.0. Il permet de configurer des FPGA de toutes marques. L’objectif du projet est de pouvoir prendre en charge tous les FPGA du marché ainsi que tous les adaptateurs et sondes de configuration.

Sommaire

	La chaîne de développement sur FPGA

	Chargement du bitstream ou « configuration »

	Quelques exemples

	Pour conclure

La chaîne de développement sur FPGA

Pour développer sur un FPGA, nous avons besoin d'un ensemble de logiciels et de formats spécifiques. La chaîne de développement sur FPGA peut se résumer par la figure ci-dessous:

[image: Chaîne de développement FPGA]

L'architecture du composant est décrite dans un langage de description (HDL pour Hardware Description Language) matériel. Cette description est convertie en un schéma électronique (Netlist) par un procédé appelé «synthèse». Les composants de la Netlist sont ensuite placés dans la matrice du FPGA (placement) puis connectés ensemble (Routage) pour former le composant décrit au début.

Toutes ces informations sont ensuite décrites dans un fichier de configuration appelé bitstream (propriétaire). Et enfin, le fichier est transféré au FPGA pour le configurer.

À l'origine, toutes ces opérations sont réalisées par des logiciels privateurs, et les formats sont verrouillés. Quand on parle de libération des FPGA on aimerait bien sûr que toute la chaîne puisse être réalisée avec des logiciels libres et des formats ouverts. Mais le point le plus bloquant évoqué est souvent le format du bitstream, qui est LE maillon le plus critique de la chaîne jalousement gardé secret par (presque) tous.

Toutes ces étapes ont désormais des projets open source qui sont suffisamment avancés pour pouvoir développer sur FPGA librement. À condition de bien choisir le modèle.

Chargement du bitstream ou « configuration »

On en oublie souvent la dernière étape consistant à télécharger le bitstream dans le FPGA. Pourtant cette étape est également dépendante du constructeur qui propose l’adaptateur à vil prix (souvent une sonde USB-JTAG). Et le logiciel est en général intégré au lourd IDE du constructeur (binaire x86) qu'il n'est pas toujours facile de configurer sur sa distribution Linux et encore moins sur une architecture exotique (raspberryPi, Risc-V, …).

Le dessein d'openFPGALoader est donc d’être « l’anneau pour les programmer tous ». Pour cela il faut :

	prendre en charge les différentes sondes de programmation du marché. La documentation indique les 14 (familles de) sondes qui le sont déjà.

	gérer le plus de FPGA possible. Même si tous ne sont pas pris en charge, la liste des 22 FPGA compatibles (un total de 61 modèles différents) est déjà impressionnante. Le logiciel semble même être devenu une référence open source pour des FPGA qui ne sont pas encore sortis. On pensera par exemple au GateMate de CologneChip qui n’est pas encore sorti mais pour lequel l’entreprise a contribué pour la prise en charge de son composant.

	gérer également les différentes cartes électroniques intégrant les FPGA ainsi que les différents modes de configuration (RAM de configuration, EEPROM maître/esclave, Flash, EEPROM interne…).

Avec cette version 0.6.0, le logiciel peut être considéré comme mature. C’est tellement devenu une référence qu’il est même intégré dans quelques distributions Linux, dans buildroot. Le logiciel fonctionne également sur Mac et Windows avec cependant plus de problème du fait du passage par le pilote usb zadig.

C'est aujourd'hui un automatisme pour configurer un FPGA, de le tester d'abord avec openFPGALoader. Avant même d'utiliser l’outil constructeur. Le logiciel apporte un confort d'utilisation et de configuration qui n'a rien à envier aux autres.

Quelques exemples

Pour illustrer, un peu l'utilisation d'openFPGALoader, supposons que nous ayons notre bitstream permettant de faire clignoter la led de la carte Tang Nano 4K. L'avantage de cette carte est que l'adaptateur de programmation est inclus et que tout passe par le même port USB.

Une fois la carte branchée on peut commencer par détecter le FPGA avec --detect :

 $ openFPGALoader --detect
 write to ram
 Jtag frequency : requested 6.00MHz -> real 6.00MHz
 index 0:
 idcode 0x100981b
 manufacturer Gowin
 family GW1NSR
 model GW1NSR-4C
 irlength 8

Le format de bitstream pour les gowin possède l'extension fs, on peut le configurer directement en donnant simplement le nom du fichier en argument :

 $ openFPGALoader led_test/project/impl/pnr/led_test.fs
 write to ram
 Jtag frequency : requested 6.00MHz -> real 6.00MHz
 Parse file Parse led_test/project/impl/pnr/led_test.fs:
 Done
 DONE
 Jtag frequency : requested 2.50MHz -> real 2.00MHz
 erase SRAM Done
 Flash SRAM: [==] 100.00%
 Done
 SRAM Flash: Success

Et si le bitstream nous satisfait on l’écrira dans la mémoire « flash » avec l’option -f pour qu’il se reconfigure à chaque allumage.

 $ openFPGALoader ide/gbhdmi/impl/pnr/gbhdmi.fs -f
 write to flash
 Jtag frequency : requested 6.00MHz -> real 6.00MHz
 Parse file Parse ide/gbhdmi/impl/pnr/gbhdmi.fs:
 Done
 DONE
 Jtag frequency : requested 2.50MHz -> real 2.00MHz
 erase SRAM Done
 erase Flash Done
 write Flash: [==] 100.00%
 Done
 CRC check: Success

Les fichiers de configuration à télécharger dans le FPGA peuvent être assez volumineux pour certain gros FPGA. Les sondes de configuration n'étant pas toujours très rapide, il est intéressant de pouvoir envoyer le bitstream compressé.

Cette option est bien sûr supporté par openFPGALoader.

Plutôt que de prendre le nom du fichier bitstream en argument, il est également possible de récupérer un «flux» sur l'entrée standard:

 cat /path/to/bitstream.ext | openFPGALoader --file-type ext [options]

Méthode très pratique si l'on souhaite configurer son FPGA via le réseau par exemple:

 # Carte connectée au FPGA
 nc -lp port | openFPGALoader --file-type xxx [option

 # Ordinateur distant
 nc -q 0 host port < /path/to/bitstream.ext

Et si vous trouvez que cette dépêche manque (scandaleusement) de TapTempo, sachez qu'openFPGALoader fonctionne très bien sur le FPGA ECP5 présent sur la carte colorlight pour y configurer le bitstream TapTempo en VHDL :

 $ openFPGALoader taptempo.bit
 Open file taptempo.bit DONE
 Parse file DONE
 Enable configuration: DONE
 SRAM erase: DONE
 Loading: [==] 100.000000%
 Done
 Disable configuration: DONE

Pour conclure

À l’heure où cette dépêche est mise sous presse, openFPGALoader a sorti une version mineure 0.6.1 (principalement pour réduire le nombre d’« assets » dans l’archive.

openFPGALoader est maintenant bien installé dans la constellation des logiciels libres pour développer sur FPGA. Même s’il n’a pas encore atteint la version 1.0, il est désormais tout à fait mature pour une utilisation en « production ». Il méritait bien une dépêche sur LinuxFR.

Aller plus loin

	
La version 0.6.0 d'openFPGALoader
(125 clics)

	
Le dépot officiel
(95 clics)

	
La documentation
(79 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/dcb8ec08de3de2356385dddf57e04d0da8012260dee62979e4066be4.png
x X

Netlist

Synthése Placement
routage

II

Chargement

Adapt !I FPGA

EPUB/imagessections19.png

