

Sortie de la version 2.5 du langage Tom

Posté par _ le 13 juillet 2007 à 06:00.

Modéré par Jaimé Ragnagna.

Étiquettes :

	développeur

[image: Technologie]

Après neuf mois de gestation depuis la dernière version, la version 2.5 du langage Tom vient de sortir, apportant son lot d'innovations.

Tom est un langage de programmation développé au sein de l'INRIA et qui ajoute des capacités de réécriture à des langages de programmation impératifs (actuellement Java, C et OCaml). Concrètement, cela signifie que Tom permet de décrire des transformations de structures de données par un mécanisme de filtrage (pattern-matching) puissant et de spécifier comment ces transformations s'appliquent à l'aide d'un langage de stratégie.

Ce style de programmation est particulièrement adapté à la manipulation d'arbres, comme des arbres XML par exemple, mais aussi des arbres représentant des programmes (cf. la dépêche de jeudi concernant CFE). Ces arbres peuvent être des structures de données du langage hôte (on pourrait par exemple fournir une description à Tom des arbres générés par CFE), ou simplement des termes algébriques à la Caml, pour lesquels Tom fournit une implémentation efficace en Java.

Il est activement utilisé par des équipes de recherche ainsi que des industriels pour :

	développer des compilateurs (comme le compilateur Tom lui-même) ;

	transformer à la volée du bytecode Java ;

	le développement d'un assistant à la démonstration ;

	la traduction de requêtes vers des bases de connaissance.

La documentation est exhaustive et à jour. Le compilateur est stable et mature. Il est accompagné des outils indispensables à son utilisation : greffon pour Eclipse, mode pour vim et tâche ant. Le tout est publié sous licences libres (GPL, APL et BSD).
Cette version s'inscrit dans la continuité de notre travail d'intégration de capacités de filtrage de motif et programmation par règles dans les langages C et Java. Sa conception fait suite aux recherches de l'équipe en matière de compilation efficace des langages à base de règles (cf. ELAN, développé au Loria).

Voyons un petit exemple pour éclairer les choses. Imaginons que nous voulions écrire un petit optimiseur qui applique la transformation suivante à un programme C par exemple :

if (! /* condition */) { /* bloc1 */ } else { /* bloc2 */ }

se transforme en :

if (/* condition */) { /* bloc2 */ } else { /* bloc1 */ }

À supposer que nous ayons un arbre représentant le programme, une règle de réécriture opérant ce genre de transformation se décrit simplement comme ceci (à quelques variations syntaxiques près, cf. le tutoriel) :

%strategy Optimize() {

 if_then_else(not(c),b1,b2) -> { return `if_then_else(c,b2,b1); }

}

Il reste ensuite à indiquer à Tom l'ordre d'application de cette règle dans l'arbre représentant notre programme, par exemple de la racine aux feuilles :

Program optimized = `TopDown(Optimize()).visit(prog);

Et voilà !

Les originalités de Tom, mise à part son intégration transparente à des langages de programmation classiques, sont d'une part l'expressivité des motifs acceptés par l'algorithme de filtrage :

	non-linéarité : f(x,x) ; f a deux fils identiques ;

	associatif : (_*,x,_*,x,_*) ; la liste contient deux éléments identiques

	antipatterns : (_*,x,_*,y@!x,_*) ; la liste contient deux élément x et y différents

	associatif avec élément neutre : plus(x,y) peut filtrer "3" en instanciant x par 0 et y par 3.

... et d'autre part son langage de stratégie qui permet de décrire simplement des stratégies de parcours complexes comme TopDown.

Une bonne façon de commencer à programmer en Tom est de parcourir les exemples du Guided tour ou de se plonger dans le tutoriel.

Cette nouvelle version contient de nombreuses améliorations et nouvelles fonctionnalités :

	Un compilateur entièrement refondu, basé sur la propagation de contraintes. Cela rend le code plus simple, et ouvre la voie à la combinaison de théories de filtrage.

	Une nouvelle bibliothèque de stratégies, plus simple à utiliser, plus efficace, et prête pour les transformations de graphes.

	Une nouvelle construction pour exprimer des paquets de règles conditionelles, qui sont appliquées systématiquement (la structure de données est en forme normale pour le paquet de règles par contruction).

	Le support complet des opérateurs de liste dont le domaine est égal au co-domaine. Ceci correspond au filtrage modulo associativité et élément neutre (AU).

	Toutes les combinaisons de motifs, anti-motifs et opérateurs de liste sont maintenant supportées.

	Il est maintenant possible de définir des termes avec pointeurs. Ceci est particulièrement utile pour représenter, analyser et transformer des termes/graphes, comme les graphes de flot de contrôle, par exemple.

Aller plus loin

	
Page principale du langage Tom
(103 clics)

	
Page du projet sur GForge INRIA
(65 clics)

	
Guided Tour
(62 clics)

	
Tutoriel
(84 clics)

	
Dépêche précédente
(53 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

