

Sortie de Node.js v0.2.0

Posté par Bruno Michel (site web personnel) le 23 août 2010 à 01:41.

Modéré par baud123.

Étiquettes :

	développeur

	nodejs

[image: JavaScript]

Node.js, dont le slogan est Evented I/O for V8 JavaScript, a pour but d'offrir un moyen simple d'écrire des applications réseau scalables. Le code est placé sous licence MIT.

Pour bien comprendre ce qu'est Node.js, je vous propose le cheminement suivant. Partons de V8, la machine virtuelle développée par Google qui permet d'interpréter du javascript. Ajoutons un modèle événementiel, similaire à EventMachine en Ruby ou à Twisted en Python. Cela tombe bien, en javascript, c'est assez naturel de procéder de cette manière : le javascript dans les navigateurs utilise déjà un modèle événementiel (les événements sont 'DOM chargé', 'touche pressée' ou encore 'clic de la souris'). C'est un bon début, mais le javascript ne possède pas de bibliothèque standard pour manipuler des fichiers ou faire des opérations réseau. Utilisons donc notre modèle événementiel pour ajouter des API qui permettent de faire ça de manière asynchrone. Une autre lacune de javascript est l'absence de moyen de charger une bibliothèque depuis un script, et comme on n'a pas spécialement envie de tout écrire dans un seul fichier, rajoutons donc une fonction require pour charger un autre script. Enfin, saupoudrons le tout avec quelques API utilitaires, un interpréteur interactif, et vous obtiendrez une bonne idée de la composition de Node.js.

Node.js permet ainsi de développer simplement des applications en javascript que l'on peut qualifier de server-side. Voici quelques exemples de ce que l'on peut faire avec Node.js :

	Node.js ircd, un serveur IRC ;

	How To Node, un blog parlant de Node.js ;

	Vows, un framework BDD ;

	Express, un framework web qui utilise les middlewares Connect.

La version 0.2.0 est sortie le 20 août et marque une première stabilisation du projet. Jusqu'à maintenant, les versions s'enchaînaient à un rythme soutenu (2 à 3 par mois), avec souvent des changements d'API et des problèmes de compatibilité divers et variés. Il est donc difficile pour les développeurs de bibliothèques de les maintenir, et pour les développeurs d'applications, de trouver les bonnes bibliothèques qui fonctionne avec la dernière version de Node.js. Cela devrait maintenant changer : Ryan Dahl a promis d'assurer la compatibilité de l'API pour les versions 0.2.x. Si vous souhaitez essayer Node.js, c'est donc le bon moment pour vous lancer !
Pour montrer la simplicité de Node.js, nous allons voir comment écrire un Hello World sous forme de serveur web.

Commençons par installer Node.js. Cela se fait simplement sur tous les UNIX (Linux, BSD, OSX...) mais nécessite de passer par Cygwin pour windows. Vous aurez besoin des outils classiques de compilation, ainsi que d'OpenSSL. Après avoir téléchargé et décompressé les sources de Node.js, il ne vous reste plus à qu'à taper la classique ligne de commande suivante :

./configure && make && make install

Nous pouvons maintenant écrire le code de notre Hello World. C'est du javascript, nous allons donc le placer dans un fichier hello.js. Voici le code en question :

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, {'Content-Type': 'text/plain'});

 res.end('Hello World\n');

}).listen(8000, "127.0.0.1");

console.log('Server running at http://127.0.0.1:8000/');

La première ligne charge le module http et le rend accessible grâce à la variable du même nom. Node.js respecte la spécification Modules de CommonJS. Ainsi, un module peut exposer un objet en l'assignant à la variable exports, et cet objet sera renvoyé par require.

À la seconde ligne, nous pouvons maintenant utiliser notre objet http pour créer un serveur. Pour cela, nous utilisons la méthode createServer, en lui passant en paramètre une fonction anonyme. Cette fonction sera appelée à chaque fois qu'un client se connectera au serveur. 2 paramètres seront passés à la requête : req, qui représente la requête du client, et res, qui va servir à construire la réponse au client.

Ici, la fonction pour répondre à un client est très simple. Nous commençons par renvoyer le code HTTP 200 - OK, avec un entête pour préciser que la réponse sera du texte brut (ligne 3). Puis, nous envoyons la réponse elle-même, à savoir le Hello World (ligne 4). Comme nous avons utilisé la méthode end plutôt que write, Node.js sait que la réponse est complète. Il pourra donc fermer la connexion HTTP quand toutes les données auront été envoyées.

À la ligne 5, nous indiquons à Node.js que notre serveur va écouter sur le port 8000 en local (127.0.0.1 est l'adresse IP locale). Enfin, à la dernière ligne, nous affichons un message sur la sortie standard pour indiquer que notre serveur tourne bien.

Nous pouvons maintenant lancer notre script :

node hello.js

Node.js va exécuter notre script. Il va arriver très vite à la fin du script, et là, contrairement à ce que l'on pourrait penser, il ne va pas quitter. À la place, il va entrer dans un mode où il va attendre des événements (avec epoll, kqueue ou select), et quand un de ces événements se produit, il exécute la fonction associée. Dans notre cas, les événements seront des clients qui se connecteront à notre serveur.

Nous pouvons maintenant taper http://127.0.0.1:8000/ dans la barre d'adresse de notre navigateur et voir notre Hello World s'afficher.

Normalement, node.js finit de s'exécuter quand il n'a plus d'événements à écouter. Dans notre cas, cela ne se produira jamais car nous ne fermons notre serveur nulle part. Pour quitter, nous allons donc devoir y aller de manière un peu brutale avec un CTRL-C.
Aller plus loin

	
Node.js, le site officiel
(26 clics)

	
Annonce de la sortie de la version 0.2.0
(14 clics)

	
Le code de Node.js sur github
(18 clics)

	
La liste des modules pour Node.js
(39 clics)

	
La documentation de l'API
(12 clics)

	
Node.js v0.2.0 sur le devblog af83
(49 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections80.png

