

Sortie de PostgreSQL 9.2

Posté par arthurr (site web personnel) le 10 septembre 2012 à 16:01.
Édité par Davy Defaud, Nÿco, Benoît, claudex, baud123 et Florent Zara.
Modéré par Florent Zara.
Licence CC By‑SA.

Étiquettes :

	sgbdr

	sql

	postgresql

[image: Base de données]

Le gestionnaire libre de base de données relationnelle PostgreSQL vient de sortir en version 9.2. Cette version est principalement axée sur l’amélioration des performances.

[image: Logo PostgreSQL]

Des informations très détaillées se trouvent sur la page du wiki « What's new in PostgreSQL 9.2 ». La liste des principales nouveautés se trouve en seconde partie de dépêche.

Nouveautés

Index-only-scan

Un des problèmes des index, est qu’ils n’ont pas d’information de visibilité, c’est‐à‐dire qu’il est obligatoire d’accéder au tuple dans la base pour savoir si l’utilisateur peut y accéder. Cela peut poser un problème de performance, car les index sont bien triés et regroupés, ce qui permet un accès rapide, mais les données peuvent être éparpillées un peu partout. Cette version n’introduit pas une information de visibilité dans les index, mais utilise des parcours d’index unique (« Index-only Scan ») quand c’est possible. Ces derniers utilisent une carte de visibilité (« visibility map ») qui permet de savoir si tout une page de données (généralement 8 Kio) est visible ou non, si c’est le cas, il n’y a pas besoin d’accéder aux données.

Réplication en cascade

Un des problèmes de la réplication avec PostgreSQL est que tous les esclaves doivent se connecter au même maître, cela implique une charge importante pour ce dernier et peut poser problème si le maître tombe et qu’il faut reconnecter l’esclave au nouveau maître. Désormais, un esclave a la possibilité de se connecter à un autre esclave pour se répliquer.

Ajout d’un nouveau type JSON

Ce nouveau type permet de stocker des données JSON et de valider la syntaxe :

 =# SELECT '{"username":"john","posts":121,"emailaddress":"john@nowhere.com"}'::json;
 json

 {"username":"john","posts":121,"emailaddress":"john@nowhere.com"}
 (1 row)

 =# SELECT '{"username","posts":121,"emailaddress":"john@nowhere.com"}'::json;
 ERROR: invalid input syntax for type json at character 8
 DETAIL: Expected ":", but found ",".
 CONTEXT: JSON data, line 1: {"username",...
 STATEMENT: SELECT '{"username","posts":121,"emailaddress":"john@nowhere.com"}'::json;
 ERROR: invalid input syntax for type json
 LINE 1: SELECT '{"username","posts":121,"emailaddress":"john@nowhere...
 ^
 DETAIL: Expected ":", but found ",".
 CONTEXT: JSON data, line 1: {"username",...

Vous pouvez aussi convertir une ligne issue d'une requête SQL en format JSON :

 =#SELECT * FROM demo ;
 username | posts | emailaddress
 ----------+-------+---------------------
 john | 121 | john@nowhere.com
 mickael | 215 | mickael@nowhere.com
 (2 rows)

 =# SELECT row_to_json(demo) FROM demo;
 row_to_json

 {"username":"john","posts":121,"emailaddress":"john@nowhere.com"}
 {"username":"mickael","posts":215,"emailaddress":"mickael@nowhere.com"}
 (2 rows)

Ajout d’un nouveau type range (plage de données)

Avant l’intégration de ce nouveau type de données, il fallait souvent utiliser deux colonnes dans une table pour gérer des plages de données.

Les types de données suivants sont supportés :

	integer (int4 et int8) ;

	numeric ;

	timestamp ;

	date.

Un exemple de requête d’intersection entre l’intervalle d’entiers ouvert‐fermé (1000, 2000] et l’intervalle d’entiers fermé‐fermé [1000, 1200] :

SELECT '(1000,2000]'::numrange * '[1000,1200]'::numrange;
 ?column?

 (1000,1200]
 (1 row)

DROP INDEX CONCURRENTLY

Le problème de la commande DROP INDEX est qu’elle demande un verrou exclusif sur la table, cela est ennuyeux si une longue requête avec un verrou (partagé) est en cours sur la table ; la suppression de l’index va être retardée, mais toutes les autres commandes vont l’être encore plus, car elles doivent attendre la suppression de l’index. Cette commande (l’équivalent de CREATE INDEX CONCURRENTLY) permet de pas gêner les requêtes DML normales, mais elle est plus restreinte, car elle ne permet de supprimer qu’un seul index à la fois et ne permet pas d’utiliser l’option CASCADE.

NOT VALID CHECK constraints

Les clés étrangères NOT VALID ont été introduites avec la version 9.1, la notion s’étend désormais aux contraintes CHECK. Cela permet de ne pas valider les données déjà présentes dans la table ; seules les lignes ajoutées ou mises à jour seront vérifiées.

Améliorations diverses

	les architectures processeur multi‐cœurs sont mieux exploitées ;

	amélioration de 25 % des tris en mémoire, dans certains cas ;

	réduction de la consommation électrique dans le cas de serveurs sous‐utilisés ;

	amélioration de la commande COPY qui génère moins de WAL (Write Ahead Log, les journaux de transaction) et moins de verrouillages de pages.

Aller plus loin

	
Le site de PostgreSQL
(121 clics)

	
Le site de la communauté française
(123 clics)

	
Le wiki
(22 clics)

	
L’annonce
(75 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/6c0a8649a564f885dfacd81749ba7c1ef4fe4dc606d156d18ba19ce2.png

EPUB/imagessections64.png

