

Sortie de Scala 2.8 !

Posté par hsyl20 (site web personnel) le 15 juillet 2010 à 11:56.

Modéré par Benoît Sibaud.

Étiquettes :

	scala

[image: Java]

La version finale de Scala 2.8 est sortie !

Scala est un langage de programmation très évolué. Il se compile en bytecode Java ou en .Net. La compatibilité avec Java est telle qu'il est possible d'utiliser des classes écrites en Java à partir de Scala et vice-versa.

Ce langage intègre de façon naturelle des fonctionnalités issues des langages orientés-objets et des langages fonctionnels. Les apports de la programmation fonctionnelle aux langages objets, plus répandus, sont multiples et deviennent rapidement indispensables une fois qu'on y est habitué.

En particulier, il est maintenant possible d'écrire des codes à la fois très concis, comme en Ruby ou Python, tout en ayant beaucoup plus de sûreté grâce à un typage statique fort. Cela est rendu possible grâce à un système très avancé de gestion et d'inférence des types.

Plus d'infos sur cette nouvelle version dans la suite de la dépêche.

NdM : Le code source de Scala est sous une licence propre au projet mais semblable à la licence BSD.
Les nouveautés de la version 2.8.0

	Nouvelle bibliothèque de collections

La bibliothèque de collections fournie avec Scala a été modifiée en profondeur afin d'éviter les redondances de code et pour faciliter l'intégration de nouvelles collections.

Certaines méthodes prennent maintenant un constructeur de collection en argument implicite ce qui est transparent pour l'utilisateur dans la majorité des cas et permet de faire des choses comme ça :

scala> val mymap = Map(1 -> "a", 2 -> "b") //On crée une table de hash

mymap: scala.collection.immutable.Map[Int,java.lang.String] = Map((1,a), (2,b))

scala> mymap.map(_._1) //On récupère la clé de chaque couple dans mymap

res13: scala.collection.immutable.Iterable[Int] = List(1, 2)

scala> mymap.map(_.swap) //On inverse chaque couple clé -> valeur dans mymap

res15: scala.collection.immutable.Map[java.lang.String,Int] = Map((a,1), (b,2))

Ici on voit que le type de la collection renvoyée par la méthode "map" est différent (List[Int] ou Map[String,Int]) suivant la fonction passée en paramètre (_._1 ou _.swap). Le type le plus adapté est automatiquement choisi !

Supposons que l'on souhaite forcer le type de retour et obtenir une collection de type Vector[Int] en appliquant la fonction _._1 :

scala> val b : Vector[Int] = mymap.map(_._1)

:10: error: type mismatch;

 found : scala.collection.immutable.Iterable[Int]

 required: Vector[Int]

 val b : Vector[Int] = mymap.map(_._1)

Ça n'est pas accepté, à juste titre, par le compilateur car dans ce cas "map" renvoie une List[Int] et non un Vector[Int]. On peut toujours convertir une List[A] en Vector[A] mais ce n'est pas efficace. Le plus efficace est de faire :

scala> import scala.collection.breakOut

import scala.collection.breakOut

scala> val b : Vector[Int] = mymap.map(_._1)(breakOut)

b: Vector[Int] = Vector(1, 2)

"breakOut", une fonction générique comme une autre (rien n'a été ajouté au compilateur), va automatiquement passer à la fonction "map" le constructeur permettant de créer un Vector[Int]. Tout ça de façon statique et type-safe grâce à l'inférence du type de breakOut avec comme contrainte le type de b (Vector[Int]).

	Nouvelle implémentation des tableaux (Array[T])

Je ne rentre pas dans les détails, ceux qui sont intéressés pourront regarder ici : http://www.scala-lang.org/sid/7

	Spécialisation

Java fait la distinction entre les types primitifs (int, double...) et les types objets (qui ont tous pour ancètre commun la classe Object). Quand on utilise des types génériques, le code généré remplace le type générique par le type ancètre commun le plus proche. Sans contrainte sur le type générique, le code généré utilise la classe Object par défaut.

Exemple : class Vector[A]

La classe Vector prend un type (A) en argument. Comme celui-ci n'est pas contraint, le code généré considerera le type A comme étant la classe Object.

Un problème se pose dans le cas des types primitifs : ils n'héritent pas de la classe Object. Pour qu'on puisse créer un vecteur d'entiers, le compilateur fait ce qu'on appelle de l'auto-boxing (et de l'auto-unboxing) : il crée un objet qui englobe le type primitif et c'est cet objet qui est utilisé (car il hérite bien de Object).

Le problème de cette méthode est qu'elle est plus lente car elle implique la création et la destruction de nombreux objets. C'est ici que la spécialisation devient utile. En écrivant :

class Vector[@specialized A]

Une classe Vector sera créée pour chaque type primitif en plus de celle habituelle utilisant un objet. Ces classes spécifiques seront utilisées par le compilateur lorsqu'il le pourra, ce qui devrait améliorer grandement les performances.

La bibliothèque standard de Scala commence progressivement à utiliser la spécialisation.

	Valeurs par défaut et arguments nommés

Il est maintenant possible de spécifier des valeurs par défaut pour les arguments de méthodes :

scala> def f(a: Int = 10, b: String) = printf("a: %d, b: %s \n", a, b)

f: (a: Int,b: String)Unit

Et il est possible de spécifier les arguments à partir de leur nom :

scala> f(b = "Yo")

a: 10, b: Yo

Ça devrait permettre de remplacer de nombreux cas où la surcharge était utilisée pour obtenir des valeurs par défaut :

def g(a:Int, b:Int, c:Int)

def g(a:Int, b:Int) = g(a,b,10)

devient

def g(a:Int, b:int, c:Int = 10)

	Package objects

En Scala, les classes ne peuvent pas contenir de méthodes statiques comme en Java. À la place elles ont un "companion object" qui est un singleton dont les méthodes sont statiques. Avant Scala 2.8, la situation était la suivante :

	les packages peuvent contenir des classes et des objets

	les objets peuvent contenir des objets, des classes, des alias de type, des méthodes statiques et des champs

En Scala 2.8, les packages peuvent aussi contenir des alias de type, des méthodes et des champs s'ils sont déclarés avec :

package object mon.nom.de.package

	Diverses améliorations dans Scala Swing

Scala Swing est un ensemble de classes qui englobent les classes de Swing. Tout est type-safe et beaucoup plus naturel qu'en Java. Exemple :

import swing._

val w = new MainFrame {

 title = "Scala demo"

 contents = new Button {

 text = "Pouche mi!"

 }

}

w.visible = true

La gestion des événements se fait naturellement avec du pattern-matching :

listenTo(mouse)

reactions += {

 case e: MouseClicked => println("Clic à la position "+e.point)

}

	Améliorations de REPL

REPL (Read-Evaluate-Print Loop) est une sorte de shell pour Scala, l'équivalent de irb pour Ruby ou ghci pour Haskell. Les exemples de cette dépêche qui comportent le préfixe "scala>" sont des extraits de sessions REPL.

Ce dernier supporte maintenant la complétion (touche tabulation).

	Amélioration des parsers combinators

Scala dispose d'une bibliothèque permettant de créer très facilement des parsers (un peu à la Flex/Bison) directement en Scala. Avec le support des Packrat parser combinators, les grammaires récursives à gauche sont dorénavant supportées.

	Support des continuations

Un plugin pour le support des continuations est maintenant intégré à la distribution standard. Comme c'est un sujet un peu complexe et qui n'intéressera pas tout le monde, je renvoie ceux qui sont intéressés à http://www.scala-lang.org/node/2096

	Conclusion

Beaucoup de choses nouvelles dans cette version qui a mis des mois avant de sortir. Les prochaines versions devraient sortir à intervalles plus réguliers et plus courts.

À noter aussi que Martin Oderksy, le créateur de Scala (et accessoirement des "generics" et du compilateur de référence de Java 1.5), a annoncé qu'il allait fonder une entreprise faisant du support pour les utilisateurs de Scala.

Je recommande vivement à tous les développeurs d'essayer Scala. N'hésitez pas à poser des questions dans les commentaires.
Aller plus loin

	
Annonce officielle de la sortie
(12 clics)

	
Site officiel
(15 clics)

	
Tutorial Scala pour programmeurs Java
(25 clics)

	
Licence Scala (type BSD)
(7 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections23.png

