

Sortie de TOM 2.3

Posté par _ le 28 avril 2006 à 23:39.

Modéré par Mouns.

Étiquettes :

	développeur

[image: Communauté]

Après un an de travail, la version 2.3 du langage TOM vient de sortir. TOM est un langage de programmation développé par l'INRIA et qui marie le meilleur des mondes des langages fonctionnels et impératifs en ajoutant des capacités de réécriture à Java, C ou OCaml (autres backends à venir).

L'utilisation de TOM est pertinente dès qu'il s'agit de manipuler des données arborescentes (termes, arbres syntaxiques, arbres XML...), ce qui est très courant en programmation.

En plus de proposer un mécanisme de pattern matching puissant (associatif) sur les types Java/C, TOM est fourni avec un langage permettant de définir des types inductifs (comme en Caml) reposant sur une bibliothèque garantissant le partage maximal de la mémoire. Enfin le langage fournit un système de définition de stratégies de parcours des arbres par combinaison de stratégies de base.

Le compilateur est une application stable, bien documentée et réellement utilisable (tâche Ant, plugin Vim...). De nombreux exemples sont fournis.
Le premier exemple du tutoriel illustre bien l'intégration de TOM au langage Java :

import main.peano.types.*;

public class Main {

 %gom {

 module Peano

 abstract syntax

 Nat = zero()

 | suc(pred:Nat)

 | plus(x1:Nat, x2:Nat)

 }

 public final static void main(String[] args) {

 Nat z = `zero();

 Nat one = `suc(z);

 System.out.println(z);

 System.out.println(one);

 }

}

Les types inductifs définis dans le bloc %gom peuvent être directement utilisés dans le programme java, et peuvent ensuite être filtrés grâce à l'opérateur %match :

 public static Nat evaluate(Nat n) {

 %match(Nat n) {

 plus(x, zero()) -> { return `x; }

 plus(x, suc(y)) -> { return `suc(plus(x,y)); }

 }

 return n;

 }

Il est également possible de définir des mappings vers des types Java prédéfinis (arbre XML DOM par exemple) pour ensuite profiter du pattern matching et des stratégies de parcours sur ceux-ci.

TOM fournit un mécanisme de pattern matching associatif, i.e. permet de filtrer des listes avec des expressions du type : (X*, a, Y* , b, Z*) plutôt qu'avec des expressions du type tête::queue comme c'est le cas en Caml.

Le langage est actuellement utilisé dans plusieurs projets de recherche mais aussi dans l'industrie.
Aller plus loin

	
Le site de TOM
(10 clics)

	
La page du projet sur GForge INRIA
(6 clics)

	
La documentation (comprenant un tutoriel)
(6 clics)

	
La page de l'équipe Protheo
(7 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections9.png

