

Sortie de Vala 0.7.6

Posté par ecyrbe le 20 septembre 2009 à 13:21.

Modéré par Nÿco.

Étiquettes :

	développeur

	vala

[image: Gnome]

Pour rappel, Vala est un langage de programmation orienté objet dont la syntaxe ressemble beaucoup à celle de C#, mais adapté au système GObject utilisé par Gtk et GNOME.

Contrairement à C# le code n'est pas interprété par une machine virtuelle, c'est un langage compilé. Pour être plus précis, le compilateur génère de manière intermédiaire du "C", ce qui permet à un logiciel programmé en Vala d'utiliser facilement des bibliothèques en C, ou à l'inverse à une bibliothèque programmée dans un langage qui s'interface avec du "C", de faire appel à une bibliothèque programmée en Vala.

Dès le début ce nouveau langage apportait nativement des fonctionnalités très intéressantes comme :	Les interfaces

	Les propriétés (spécifique aux GObjects)

	Les signaux (démocratisé par Qt)

	Les expressions Lambda

	Les classe génériques

	La gestion assistée de la mémoire

	La gestion des exceptions

Cette nouvelle mouture apporte deux grosses nouveautés :	Les closures (version plus puissante des expressions Lambda)

	Les appels asynchrones

Plus d'informations dans la suite de la dépêche.
Jürg Billeter et Raffaele Sandrini, les développeurs de vala fournissent quelques exemples des deux nouveautés, dont voici une retranscription en français quelque peu remaniée (cf blog pour la version anglaise) :

Closures

Bien que Vala supporte les expressions lambda depuis longtemps, elles ne permettaient pas d'accéder aux variables locales en dehors du contexte de leur construction.

Avec la version 0.7.6 celà a changé puisque vous pouvez accéder et modifier toutes les variable locales dans les expressions lambda, ce qu'on appelle les closures.

Nous espérons quelles seront utiles pour simplifier l'écriture des gestionnaires de signaux (slots en Qt), comme dans l'exemple ci-dessous :

 void main (string[] args) {

 Gtk.init (ref args);

 var window = new Gtk.Window (Gtk.WindowType.TOPLEVEL);

 window.set_default_size (300, 50);

 window.destroy.connect (Gtk.main_quit);

 var button = new Gtk.Button.with_label ("Click me!");

 button.clicked.connect (() => {

 window.title = "Closures in Vala";

 });

 window.add (button);

 window.show_all ();

 Gtk.main ();

 }

Vous pouvez même écrire des expressions lambda récursives :

 delegate int Func (int i);

 void main () {

 Func fib = null;

 fib = (i) => (i <= 1) ? i : (fib (i - 2) + fib (i - 1));

 for (int i = 0; i < 10; i++) {

 message ("%d", fib (i));

 }

 }

Méthodes asynchrones

Pour simplifier l'écriture de code faisant appel à des fonctions asynchrones nous avons eu l'idée d'intégrer les méthodes asynchrones directement dans le langage.

Les méthodes asynchrones sont fréquemment utilisées dans les API d'entrée/sortie telles que GIO et D-Bus. En général, écrire des programmes asynchrones est considéré difficile, car l'on en arrive vite à écrire des suites de callbacks et l'on perd facilement la trace du flot d'exécution du programme.

La gestion expérimentale des méthodes asynchrones a été développée depuis longtemps en vala. Cependant, cette mise en œuvre relevait plus du prototype qu'autre chose. Bien que l'on s'attende à quelques bugs, avec cette nouvelle mouture, nous avons une implémentation bien plus complète et robuste qu'elle ne l'a été par le passé.

Alors à quoi ça ressemble? Le code suivant définit une méthode asynchrone nommée list_dir qui énumère de manière asynchrone tous les fichiers du répertoire "Home" :

 async void list_dir () {

 var dir = File.new_for_path (Environment.get_home_dir ());

 try {

 var e = yield dir.enumerate_children_async (FILE_ATTRIBUTE_STANDARD_NAME, 0, Priority.DEFAULT, null);

 while (true) {

 var files = yield e.next_files_async (10, Priority.DEFAULT, null);

 if (files == null) {

 break;

 }

 foreach (var info in files) {

 print ("%s\n", info.get_name ());

 }

 }

 } catch (GLib.Error err) {

 warning ("Error: %s\n", err.message);

 }

 }

 void main () {

 list_dir.begin ();

 var loop = new GLib.MainLoop (null, false);

 loop.run();

 }

Comme vous pouvez le constater, il est très facile d'appeler les méthodes asynchrones enumerate_children_async et next_files_async que ce soit dans une boucle ou même dans un bloc gérant les exceptions (try-catch). Inutile de s'encombrer avec la création de structures pour les donnée à conserver entre les appels, tout est limpide et intégré au langage.
Aller plus loin

	
L'annonce officielle
(4 clics)

	
Le site de vala
(12 clics)

	
Tutoriel
(9 clics)

	
Blog
(6 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections17.png

