

SPARQL, le SQL du Web, et Linked Data Fragment : le point sur le requêtage du Web

Posté par thoasm le 01 janvier 2017 à 15:49.
Édité par Davy Defaud, bubar🦥, palm123, Benoît Sibaud et ZeroHeure.
Modéré par Nils Ratusznik.
Licence CC By‑SA.

Étiquettes :

	sparql

	sql

	web

	ldf

	wikidata

[image: Base de données]

« Chère pêche »,

En ce début d'année, il ne me semble pas inutile de faire le pont entre la rétrospective et la perspective, afin de conjuguer l’avenir du Web au présent. :-)

Le but de cette dépêche est de faire un tour d’horizon de technologies permettant de faire des requêtes sur des données structurées : le Web sémantique. Comment il a évolué en dix ou quinze ans et ce qu’il permet de faire. Après une introduction contextuelle et historique, il sera question de Sparql et de linked data fragments, ainsi que de leurs usages en pratique chez Wikimedia Foundation.

Accrochez‐vous à votre fauteuil, il va être question de niveaux d’abstractions, d’enrichissement croisé de données, de manipulation de tables, de la pertinence du choix de RDF par rapport à SQL, des outils utilisés par les contributeurs Wikimedia mis au point par les développeurs du projet et, enfin, des limites actuelles et d’un avenir possible.

Sommaire

	Contexte

	
SPARQL
	Les bases

	
SPARQL et typage
	SPARQL, le typage et Wikidata

	Les chemins de propriétés

	Les nœuds blancs

	Et le reste…

	Linked Data Fragment : des requêtes à l’échelle du Web

Contexte

Note : pour aller à l’essentiel, ceux qui connaissent déjà l’historique du Web et du Web sémantique peuvent passer les paragraphes suivants et sauter directement à la prochaine note en italique.

Le « requêtage » du Web fut et est toujours basé essentiellement sur l’indexation automatique de documents, trouvée grâce à des robots d’indexation, et un tri pertinent des résultats des recherches (par mots clefs) pour maximiser les chances que l’utilisateur trouve ce qu’il cherche dans les premiers résultats. Vous n’ignorez probablement pas que ce dernier point est la clef du succès du moteur de recherche Google, grâce au PageRank. Problème résolu.

Problème résolu ? Peut‐être pas totalement. Si les techniques présentées dans ce court paragraphe préliminaire se sont révélées capables de générer une des entreprises multinationales les plus puissantes du monde en à peine plus d’une décennie, l’initiateur même du Web a proposé très tôt une vision alternative basée sur des données, non pas textuelles, cette fois, mais des choses plus proches des structures de données qu’on utilise habituellement en programmation ou quand on conçoit et utilise des bases de données. Ça a créé toute une palette de technologies et d’articles de recherche regroupés sous le nom de Web sémantique et Linked data.

Malgré un certain nombre de critiques — c’est dur, ça ne marchera jamais, XML sapu —, ce domaine et la recherche autour ont dans un premier temps donné naissance à des technologies normalisées par le W3C, comme tout ce qui tourne autour de XML (XPath) et utilisées par des acteurs de l’industrie. La verbosité et la complexité de XML ont été progressivement complétées par des technologies plus légères pour l’échange de données. Mais l’idée sous‐jacente n’est pas très différente : les données sont représentées sous la forme d’un arbre. Tout comme une page Web traditionnelle en somme. Le Web s’est beaucoup développé autour des documents arborescents. Un aperçu et une explication de l’architecture de quelques‐unes de ces technologies sont lisibles dans l’article Wikipédia Semantic Web Stack.

Pourquoi ce domaine de recherche n’est pas mort ? Eh bien, j’ai envie de dire que ça devrait être évident pour n’importe quel informaticien et l’on en trouve des traces dans des projets comme cette présentation d’une personne de Microsoft autour de l’extraction de données structurées présentes dans les pages Web, comme les tableaux de données, mais encore le projet weboob, qui vise à récupérer des données facilement exploitables dans des programmes informatiques. Tim ne s’était pas trompé.

Après cette longue introduction, j’en viens au cœur du sujet : la présentation de quelques‐unes des technologies au travers d’une de leurs applications concrètes, d’un problème rencontré dans le cadre de ces utilisations et des pistes de résolution de ces problèmes.

SPARQL

Note : c’est là !

SPARQL est en particulier utilisé par Wikidata et c’est ce projet qui nous servira à illustrer son utilisation concrète et les problématiques.

La première technologie que je voudrais présenter, c’est SPARQL. SPARQL (« étincelle » en jeu de mots) est un langage qui ressemble beaucoup à SQL, dont il reprend d’ailleurs des mots clefs et des constructions, étendu pour pouvoir gérer des relations qui ne sont pas définies à la manière des schémas de données SQL classiques.

Les bases

En particulier, SPARQL ne possède pas de construction FROM pour définir les relations que l’on va requêter. Par défaut, on peut requêter n’importe quelle relation présente dans la base de données. Une « relation » n’a pas à être déclarée explicitement et peut être n’importe quelle URI ! SPARQL est donc par défaut vachement plus ouvert que SQL, vu que l’on n’est pas limité à utiliser les ressources définies dans notre instance de base de données. On peut utiliser n’importe quelle adresse Internet (prévue pour, c’est mieux).

Deuxième différence avec les bases de données SQL : les relations ont forcément deux uniques colonnes. En réalité, elles ne sont d’ailleurs pas représentées sous forme de triplets <sujet> <prédicat> <objet> dans les exportations de bases SPARQL. Les bases SPARQL correspondent au modèle de base de données orientée graphe. En conséquence, en SPARQL on n’écrira pas :

SELECT nom FROM personne

Mais plutôt :

SELECT ?nom WHERE {
 ?personne a personne .
 ?personne nom ?nom
}

Cette requête est construite à partir de deux « motifs de triplets » (triple pattern, TP). Je reviendrai sur le premier plus loin. Un TP comporte trois composantes qui correspondent respectivement au prédicat, au sujet et à l’objet. Ils servent à filtrer l’ensemble des triplets de la base de données pour ne retenir que ceux qui correspondent au motif. Chacune des composantes d’un BGP peut être soit une constante, soit une variable. Les noms de variables sont précédés d’un point d’interrogation.

Un motif de triplet correspond à un ensemble de triplets de la base de données. Par exemple, si l’on a les triplets suivants :

<personne1> <nom> "Bob"
<personne1> <sexe> <Masculin>
<personne2> <nom> "John"

Le motif ?personne nom ?nom va correspondre aux triplets 1 et 3. Pour chacun de ces triplets, les variables ?personne et ?nom auront pour valeurs respectives le sujet et l’objet qui conviennent.

Un point intéressant et qui diffère encore une fois avec SQL est qu’on peut mettre une variable sur les trois composantes du triplet, donc de la relation. C’est comme si on pouvait mettre une variable sur un nom de table en SQL. Il est ainsi possible de créer un motif ?s ?p ?o qui correspondra avec n’importe quel triplet de la table. On peut, par exemple, compter l’utilisation de chaque prédicat ainsi :

SELECT (count(?s) as ?nombre) {
 ?s ?p ?o .
} group by ?p

Un exemple dans le vrai store de Wikidata, ça donne ça).

Il est possible d’exclure certains de ces triplets grâce à la clause FILTER :

 ?personne nom ?nom filter (?nom != "John") .

Le critère de sélection supplémentaire est une expression booléenne pouvant utiliser les fonctions XPath.

Ces triplets peuvent se combiner en utilisant des points entre, pour former un « motif basique de graphe » (Basic Graph Pattern, BGP). Il devient alors possible de faire des jointures entre les résultats de ces triplets, simplement en réutilisant le même nom pour les variables :

 ?personne nom ?nom .
 ?personne sexe ?sexe .

Cela peut s’abréger en utilisant des points‐virgules pour éviter d’avoir à préciser l’objet, s’il se répète plusieurs fois. La requête suivante permet grâce à cela de reconstituer un équivalent d’une table SQL personne à partir de nos triplets :

SELECT ?personne ?nom ?sexe {
 ?personne a personne ;
 nom ?nom ;
 sexe ?sexe .
}

L’équivalent des jointures à gauche et à droite se fait grâce au mot clef optional, qui permet de définir des triplets dont les variables n’ont pas nécessairement de valeurs.

SPARQL et typage

Comme promis, on va revenir sur ce fameux a dans ?personne a personne. Ce n’est pas une propriété comme les autres. Techniquement, ce n’est pas une propriété d’ailleurs, mais un « chemin de propriété » (plus là‐dessus, plus loin…).

Il est ici pour une raison bien précise : SPARQL n’a pas vraiment de notion de type, en dehors des types de bases (qui sont d’ailleurs assez riches) du Web sémantique et de la couche sous‐jacente RDF : les types de données de base de RDF. Il délègue ainsi le typage des données qu’il manipule à RDF et RDFS.

Alors que dans une base SQL classique une sorte de typage est codé dans la notion de table et de ses champs, rien de tel n’existe dans une base SPARQL. Le type des URI est donné par des propriétés comme les autres : rdf:type et rdfs:subType, qui permettent de créer des hiérarchies de classes, comme dans un langage à objets.

Pour dire qu’une URI particulière est une personne, on doit avoir un triplet tel que personne1 rdf:type personne . dans notre dépôt. Ça marche aussi avec une sous‐classe de personne. Le mot clef a est un raccourci pour dire exactement ça. Teaser, avec un chemin de propriété, a s’écrit rdf:type/rdf:subClassOf*.

On peux ainsi réutiliser la propriété nom pour un chien, sans nécessairement avoir à créer un nouveau champ dans la table chien, comme on le ferait peut‐être en SQL si l’on avait une table chien et une table personne.

Il y aurait beaucoup à dire sur le typage dans le Web sémantique, mais c’est hors cadre de cet article. Ça concerne la notion d’ontologie formelle et les couches plus hautes de la pile du Web sémantique, comme OWL et les moteurs d’inférences. Ces couches rajoutent la possibilité de faire des schémas de données plus avancées et la possibilité de déduire des triplets qui ne sont pas explicites dans le dépôt, grâce à des règles logiques. Mais on n’en est pas du tout là sur Wikidata, en particulier, d’où le paragraphe qui suit.

SPARQL, le typage et Wikidata

Wikidata, ou plutôt ses développeurs, utilisent clairement SPARQL, RDF et son typage. Ils l’utilisent cependant uniquement pour définir le format d’exportation RDF des données de Wikidata et/ou le modèle de données Wikibase — qui a ses propres types de base encore enrichies, par rapport aux types de RDF, avec des notions comme la précision des données pour les quantités, les unités, etc. —, le format des déclarations Wikidata et compagnie.

Mais les contributeurs n’ont pas accès aux propriétés rdf:type ou « sous‐classe de ». Les données que les contributeurs enrichissent sont considérées comme ayant leur propre niveau d’abstraction. Wikidata n’est pas constitué de triplets, mais de « déclarations », qui sont plus complexes, possèdent des métadonnées, telles que les sources, par exemple.

La communauté est laissée totalement libre de la manière dont elle utilise ce modèle, et elle a créé des équivalents distincts de ces propriétés RDF : nature de l’élément, pour prendre le nom français, et sous‐classe de. Ainsi, la communauté n’est pas enchaînée à RDF ou à OWL, et peut utiliser les technologies qu’elle veut pour tout ce qui touche aux déductions par rapport aux données existantes, par exemple.

Les chemins de propriétés

Les chemins de propriétés, PropertyPath en anglais (PP), s’appuient sur la notion de chemin dans un graphe pour généraliser l’idée de triplet ?s ?p ?o, quand le sujet et l’objet sont reliés indirectement. Par exemple, une personne et ses ascendants sont souvent reliés par un chemin si ce ne sont pas son père ou sa mère.

Les PropertyPath ressemblent beaucoup à des expressions rationnelles. On y retrouve des opérateurs, comme l’étoile pour l’itération : personne1 père* ?ascendant va par exemple sélectionner tous les pères, grands‐pères, arrière‐grands‐pères de personne1. Les autres opérateurs intéressants sont l’oblique / — slash —, une sorte d’équivalent de la notation pointée des structures du C et la barre verticale |, qui exprime l’alternative entre plusieurs motifs (comme le ou logique).

Par exemple, là où l’on écrirait grandpère = personne.père.père en C ou en Java, on peut écrire ?personne père/père ?grandpère en SPARQL. Si l’on veut tous les ascendants de la personne, on pourra écrire ?personne (père|mère)* ?ascendant.

Les nœuds blancs

Une autre fonctionnalité intéressante, conceptuellement et syntaxiquement, est héritée de RDF. Il s’agit des « nœuds blancs » : une utilité de ces nœuds blancs est d’exprimer une « valeur quelconque ». Par exemple, si l’on veut sélectionner toutes les personnes qui ont des enfants, on pourra écrire le motif de triplet suivant : ?parent enfant [] ..

Conceptuellement, la chose va cependant plus loin et il est aussi possible d’utiliser des nœuds blancs comme valeurs de triplets dans la base de données. Quelque chose comme « né de père inconnu » pourra s’exprimer explicitement dans le dépôt en utilisant un nœud blanc comme valeur du père de la personne.

C’est ainsi qu’est implémentée la valeur spéciale « valeur inconnue » du modèle de données de Wikidata en RDF. Voici la requête pour trouver les éléments des gens que Wikidata sait être nés de pères inconnus :

select ?personne {
 ?personne wdt:P22 ?father filter(isBlank(?father)) .
}

L’autre intérêt des nœuds blancs est de fournir des raccourcis sympathiques d’écriture et d’éviter de créer des variables. Il suffit pour ça d’ajouter des choses entre les crochets. Plus précisément, des couples ?p ?o séparés par des « ; », le sujet étant notre nœud pour lequel on ne veut pas créer des variables. Pour trouver les habitants d’une capitale d’un pays démocratique, on pourrait s’en sortir avec :

?personne habite [a capitale ; capitale_de [a démocratie]]

Hop, la requête sur query.wikidata.org.

La fonction isBlank() permet de savoir, comme son nom l’indique, si une valeur est effectivement un nœud blanc dans le dépôt.

Et le reste…

On peut bien entendu combiner joyeusement toutes ces fonctionnalités grâce à d’autres opérateurs comme union, pour faire :

	une union de deux sous‐requêtes ;

	utiliser des requêtes complètes dans des requêtes ;

	faire de l’agrégation, exactement comme dans SQL ;

	calculer des différences ensemblistes, pour prendre les résultats qui correspondent à une requête sauf ceux qui sont résultats d’une autre requête ;

	etc.

Bref, c’est un langage qui permet de faire plein de trucs chouettes :-), dont le fait de faire des requêtes très complexes demandant beaucoup au serveur de bases de données. Celui de Wikidata coupe le calcul d’une requête au bout de trente secondes et il arrive relativement souvent que des requêtes de tous les jours n’aboutissent pas.

Pour cette raison, entre autres, d’autres technologies ont émergé pour permettre au client de faire une partie du calcul, ce qui nous amène à la dernière partie de cette dépêche.

Linked Data Fragment : des requêtes à l’échelle du Web

On l’a vu, ne serait‐ce que pour Wikidata, qui possède un jeu de données conséquent mais dont le volume de données n’a pas de quoi faire peur à un informaticien moyen ou à un expert en [mégadonnées], les performances peuvent déjà être un problème. Les requêtes complexes ou certaines requêtes particulières ne se terminent pas. Qu’elles qu’en soit la raison. Jeunesse ou bogue du moteur ? Réelle complexité de la requête ? Peu importe.

Alors, qu’en est‐il du vieux rêve de faire des requêtes de bases de données à l’échelle du Web en temps réel, en croisant les données de différents endroits ? Impossible ? Il semblerait que non.

En faisant le constat que sur le Web, ce qui est rare ou limitant est probablement le temps de calcul des serveurs, l’idée est d’être gentil avec eux et de déporter le calcul sur les clients et ne demander aux serveurs que des choses qu’ils peuvent calculer rapidement, en laissant les clients faire les calculs complexes. Nos ordinateurs passent beaucoup de temps à ne rien faire…

Le prix à payer est sans doute à chercher du côté de la bande passante, mais la solution est séduisante : aider à la disponibilité des serveurs tout en pouvant facilement croiser les données, sans être limité par l’expiration du délai d’attente du serveur… Eh bien figurez‐vous qu’on peut déjà le faire, dans le langage que je vous ai présenté plus haut qui plus est : http://client.linkeddatafragments.org/.

J’avoue que je suis assez impressionné. Tout ça est encore jeune et il reste sans doute pas mal de réglages à faire, cf. http://linkeddatafragments.org/. Mais, ça « juste marche » ! Et Wikidata a mis ça en place très récemment, même si des questions se posent encore.

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections64.png

