

Spécifications OpenGL 3.1


Posté par auve le 25 mars 2009 à 11:31.

Modéré par Nÿco.

Étiquettes :

	développeur











[image: Serveurs d’affichage]



Une nouvelle version de la spécification d'OpenGL est disponible.





OpenGL est l'interface de programmation standardisée de référence pour le rendu 3D, développée par le groupe Khronos, un consortium d'industriels ayant des intérêts dans le domaine (Intel, AMD, Apple…). Basée sur le langage C, elle a l'avantage d'être portable sur de nombreuses plate-formes, y compris sur du matériel mobile via sa mouture « ES ». Elle est en concurrence avec l'interface propriétaire de Microsoft, Direct3D, qui est au fil des ans devenue la référence dans le domaine du jeu vidéo sur ordinateur personnel.





À l'occasion de la Game Developpers Conference 2009, le groupe Khronos a donc publié les spécifications d'OpenGL 3.1, qui représente une étape importante de son développement, abandonnant finalement les reliques du passé. OpenGL 3.1, alliée à la naissante interface de calcul à hautes performances sur cartes graphiques OpenCL, se pose donc enfin comme une alternative tout à fait moderne à Direct3D. Cette version s'accompagne d'évolutions touchant GLSL, le langage d'écriture de Shader associé.





Une mise en perspective de cette nouvelle version dans l'histoire d'OpenGL est disponible dans la seconde partie de la dépêche.
Cette partie de la dépêche va tenter de décrire objectivement ce que j'ai pu glaner de l'évolution du rendu 3D grand-public, d'OpenGL et de sa concurrence. Elle est en grande partie tirée de cet intéressant article et adopte uniquement le point de vue « divertissement » par opposition au rendu 3D professionnel.





Un peu d'histoire





Historiquement, OpenGL découle d'IRIS GL, bibliothèque propriétaire écrite par SGI pour ses stations de travail 3D haut de gamme. Au début des années 90, Silicon Graphics, pour assoir sa domination sur le domaine, décide de standardiser l'interface d'IRIS GL et de la pousser comme lingua franca de la programmation 3D. OpenGL était née. Parallèlement, SGI créée l'OpenGL Architecture Review Board, un comité d'entreprise chargé de faire évoluer OpenGL.





Parallèlement, le jeu sur ordinateur personnel explose. En 1995, les premières cartes 2D/3D grand public sont disponibles, et Microsoft publie la première version de Direct3D, futur concurrente d'OpenGL. La bibliothèque est à l'époque très mal reçue par plusieurs développeurs de renom, comme John Carmack. Au cours des années suivantes, Microsoft ne se décourage pas et continue à faire évoluer son offre, devenue peu à peu populaire pour l'écriture de jeux sous Windows, et se rapproche progressivement des fabricants de matériel.





Jusqu'aux années 2000, les cartes graphiques sont principalement des circuits dédiés à l'accélération de certaines fonctions précises, comme par exemple la gestion de la luminosité ou du brouillard. Cet état de fait est bien sûr reflété aussi bien par OpenGL que Direct3D qui disposent de fonctions dédiées à la gestion de ces tâches. Chaque interface de programmation permet à un auteur de pilote d'exposer aux développeurs certaines fonctionnalités spécifiques au matériel sous-jacent : extensions pour OpenGL, bits de capacité pour Direct3D.





Les choses changent au début des années 2000, les cartes graphiques évoluent profondément en devenant en partie programmables, à la manière d'un processeur conventionnel (mais dans une moindre mesure). En 2001, pour la première fois, Direct3D innove et bifurque de la voie tracée par SGI en introduisant le support pour les pixel et vertex shaders, ces programmes qui vont donc s'exécuter sur la carte graphique pour permettre certains effets précédemment impossibles. SGI et l'OpenGL ARB semblent pris au dépourvu et soumis à des conflits internes. Un an plus tard, Direct3D 9.0 introduit HLSL, un langage de programmation de haut niveau inspiré du C et dédié à l'écriture de shaders, et les fonctionnalités qui formeront le standard de facto du développement 3D contemporain.





Toutefois, sous l'impulsion principale de 3DRealms, l'OpenGL ARB s'ébroue et finit par introduire OpenGL 2.0 en 2004 puis 2.1 en 2005, qui offriront les mêmes possibilités que Direct3D 9.0, y compris son langage de shading (GLSL, évoqué en introduction). Parallèlement à cela, la possibilité de programmation des cartes graphiques augmente énormément, et la circuiterie dédiée aux tâches fixe diminue en proportion (tout en restant non-négligeable). Les possibilités des shaders se complexifient avec les versions mineures de Direct3D 9.





En 2006, Microsoft bouleverse sa bibliothèque en introduisant Direct3D 10.0, profondément incompatible avec les versions précédentes. En plus d'autres évolutions, les fonctions gérant les parties fixes du Pipeline 3D disparaissent, tout comme le système permettant à chaque carte d'offrir ses possibilités spécifiques : désormais, à génération de Direct3D fixée, les cartes sont fonctionnellement équivalentes. Les pilotes correspondants ne fonctionneront que sous Windows Vista et ultérieur.





L'impopularité de Windows Vista ouvre donc une brèche dans laquelle OpenGL peut s'engouffrer ; l'OpenGL ARB en a transféré la responsabilité au groupe Khronos précédemment cité, qui s'était montré très efficace dans sa gestion d'OpenGL ES. Khronos promet donc une transparence accrue et une modernisation drastique, semblable à celle entreprise par Microsoft en ce qui concerne la suppression des fonctions fixes du pipeline, qui ne correspondent plus à la réalité des cartes graphiques contemporaines et sont émulées par les pilotes. Mais fin 2007, Khronos reste muet, puis explique avoir rencontré certains contre-temps ; les développeurs s'en émeuvent, y compris sur LinuxFr. À l'été 2008, Khronos publie enfin les spécifications d'OpenGL 3.0 ; il est cependant clair que la plupart des aspects novateurs ont été supprimés, et qu'OpenGL 3.0 apporte peu aux extensions disponibles pour OpenGL 2.1. Les fonctions dédiées au pipeline fixe sont toujours présentes, bien que dépréciées ; John Carmack blâme le lobbying des auteurs de logiciels de conception assistée par ordinateur, effrayés à la perspective de devoir réécrire une partie de leurs codes sources.





Aujourd'hui et demain





Même si de très rares reliques du passé subsistent, OpenGL 3.1 supprime finalement les fonctions dépréciées dans OpenGL 3.0, et rejoint enfin l'état de l'art. Ces dernières sont toutefois disponibles dans une extension que les auteurs de pilotes sont libres d'implanter ou non.





La possibilité de programmation toujours croissante des cartes graphiques pose la question de leur évolution à moyen et long terme. Plus uniquement réservés au graphisme, ces processeurs massivement parallèles offrent désormais un rapport performances/prix inégalé pour les problèmes relevant du parallélisme de données. Intel, AMD/ATI et NVidia semblent tous tabler sur un rapprochement entre processeur central et cartes graphiques, au moins au niveau du rôle à jouer.





En particulier, NVidia propose depuis plusieurs années « C pour CUDA », un langage propriétaire inspiré du C et dédié à la programmation généraliste sur carte graphique. C'est sur cette base implicite qu'Apple et d'autres membres du groupe Khronos ont conçu OpenCL, un standard poursuivant le même but et à la syntaxe rappelant celle d'OpenGL. L'interopérabilité OpenCL - OpenGL est prévue, et OpenGL 3.1 introduit une fonctionnalité prévue à cet effet, le CopyBuffer. Évidemment, Microsoft prévoit avec Direct3D 11 d'introduire un équivalent propriétaire, sobrement nommé compute shader.





À très long terme, on peut se poser la question de la pertinence d'une couche d'abstraction de haut niveau vis-à-vis de cartes graphiques pleinement programmables, par rapport à l'écriture de code natif pour les cartes graphiques. Cette vision, poussée par Intel et son Larrabee, futur hybride de processeur x86 et carte graphique, semble exciter certains membres de la communauté académique mais est porteuse d'autant de promesses (diversité, renaissance d'approches alternatives…) que de dangers (fragmentation, instabilité…).





Et en ce qui concerne Linux et le logiciel libre ?





NVidia a annoncé le support de la spécification d'OpenGL 3.1 dans ses pilotes propriétaires en bêta le jour même de sa publication. AMD/ATI promet faire de même dans un très court laps de temps.





Si on revient au logiciel libre, la situation est assez complexe mais prometteuse. À l'heure actuelle, aucun pilote n'offre de support supérieur à la version 2.1 d'OpenGL ; toutefois, d'énormes travaux ont eu lieu au cours de l'année écoulée.





Trois briques sont responsables de la gestion matérielle de l'OpenGL sous Linux : le noyau lui-même, la bibliothèque Mesa et Xorg. Chaque couche a évolué pour offrir aux pilotes performances et simplicité accrues. L'intégration dans Mesa de Gallium3D, un nouvelle couche dédiée à l'écriture de pilotes graphiques, devrait parachever le tout. Zack Rusin, développeur chez Tungsten Graphics, révélait il y a quelque jours sur son blog que des travaux sur la gestion d'OpenCL dans Gallium 3D étaient en cours ; OpenGL 3.1 risque toutefois de se faire désirer assez longtemps.





Conclusion





Le domaine du graphisme 3D est en ébullition comme jamais. Le libre et les standards ont probablement un rôle à jouer. Avec l'avènement des consoles et le relatif essor des systèmes d'exploitation alternatifs (dont Mac OS X), la demande pour une interface de programmation standardisée devrait renaître. Espérons également que l'essor des cartes graphiques comme (co)processeurs généralistes ne laisse pas le libre sur le carreau.
Aller plus loin


	
L'annonce de Khronos
(9 clics)


	
La spécification d'OpenGL 3.1 (PDF)
(49 clics)


	
La spécification de GLSL 1.40 (PDF)
(17 clics)


	
OpenGL sur Wikipédia
(56 clics)









EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/imagessections52.png





