

Squest: portail de services pour SRE/DevOps en frontal d'Ansible Tower/AWX

Posté par sispheor le 08 août 2021 à 09:46.
Édité par Benoît Sibaud, bobble bubble et palm123.
Modéré par Benoît Sibaud.
Licence CC By‑SA.

Étiquettes :

	ansible

	python3

	devops

[image: Administration système]

Squest est un logiciel libre (Apache-2.0) permettant d'exposer de l'automatisation, basée sur Ansible Tower/AWX, en tant que service (mode SaaS).

Ansible Tower et sa version libre AWX sont une console centrale de gestion des tâches d'automatisation, pour Ansible qui sert à automatiser la gestion et la configuration d'ordinateurs. Ces outils sont notamment utilisés par des profils ingénierie de la fiabilité des sites (SRE Site Reliability Engineering) ou DevOps.

Il existe une vidéo d'introduction à Squest.

[image: squest-service-catalog.png]

Squest propose, pour le moment, deux principales fonctionnalités :

	un catalogue de services

	un gestionnaire de suivi de ressources

Le catalogue de services

Provisioning de ressources

Le cas d'usage de notre équipe est le suivant : nous proposons des services d'infrastructures comme des machines physiques et virtuelles, des clusters dédiés sur Kubernetes, Openstack ou encore Openshift.

Pour la création de ces services nous reposons sur des playbooks Ansible que nous lançons depuis Ansible Tower/AWX.

Nous ne souhaitons pas donner accès directement à Tower à nos utilisateurs finaux pour de multiples raisons mais principalement aussi parce que nous souhaitons approuver les demandes.

Grâce à Squest, nous créons des services dans un catalogue (par exemple "VM dans un vCenter") que l'utilisateur peut commander.

En qualité d'administrateur nous pouvons vérifier les demandes, les modifier et les valider afin qu'elles soient exécutées par Tower/AWX.

Les services sont donc des pointeurs vers les jobs templates que vous avez créés du coté de Tower/AWX. Cela rend Squest générique et permet d'ajouter autant de services que vous avez d'automatisations disponibles du coté de vos playbooks.

Cycle de vie des instances

Chaque requête approuvée et provisionnée donne naissance à une instance du service sélectionné.

Cette instance permet à l'utilisateur d'effectuer plus tard de nouvelles requêtes, afin de gérer le cycle de vie.

Prenons un exemple concret. Vous avez un service qui permet la creation de machines virtuelles.

La première opération fait appel à un script Ansible qui va provisionner la machine virtuelle (VM) dans l'hyperviseur.

On peut alors imaginer de nouvelles opérations permettant de:

	Changer les caractéristiques de la VM (vCPU, memoire, disque,…)

	Réinstancier le système

	Supprimer la VM

Là où certains outils de ce type sont de type fire and forget et ne permettent que de provisionner des resources, Squest peut associer des opérations de mise à jour ou de suppression sur les instances qu'il a créées afin de pousser au maximum l'autonomie des utilisateurs.

Le suivi des resources

Le suivi de ressources permet à l'administrateur de connaître l'état de consommation de son infrastructure.

Une vidéo démo de cette fonctionnalité est disponible.

[image: squest-resource-tracker-graph.png]

De nos jours, les infrastructures IT sont composées de multiples niveaux : serveurs physiques, machines virtuelles, conteneurs,…

Chaque niveau est alors producteur ou consommateur des ressources d'un autre.

En qualité d'administrateur système, la supervision de la consommation de chaque niveau est nécessaire afin de valider les demandes de service.

La fonctionnalité de suivi de ressources permet de visualiser et de mettre en lumière les ensembles de ressources des infrastructures.

Chaque ressource peut être liée à une instance du catalogue de service qui peut elle-même être liée à un groupe de facturation.

Un tableau de bord permet enfin un visualiser la consommation de chaque groupe.

[image: squest-main-page.png]

Aller plus loin

	
Code source
(445 clics)

	
Documentation
(262 clics)

	
Démo video 1: catalogue de service
(131 clics)

	
Démo video 2: suivi des resources
(70 clics)

	
Discuter avec les devs ou la communauté
(54 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/e4b0b3e3d4767029a85b9c6bee7993e180d7b5f61236876c7719174f.png
Dashboard

auest A
Instance 1 8
Opened support Users
More info ©
Tower,
Metrics
W Service catalog
quests . s
Instances
@ Support
urce vracking
D Resource poo
B Resource group
Request by state Instance by senvice type

% Graph

7

Users without billing groups

More info ©

Instance by billing

—c

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/f35a2defe18d3be80478631ba15110be9fad906c54ba007bc48af7bc.png
Resource Tracker Graph

Openshift Masters 3

vCPU

Available

Bare metal ser 4
CPU 220
Memory 570
Name |Produced |Consumed
vCPU 220 84
Memory 570 232

12

Openshift Workers 4

vCPU

72

Memory

72

Memory

160

Name

Available

requests.cpu

72

83

-11 (-15%)

requests.memory

160

133

27 (17%)

requests.cpu

OCP Proje: 5

83

requests.memory

133

EPUB/11487a4cf5fa058651046b73fe277e6d727dbf3a3db7568dd8f6ab94.png
Available services

1
.
vmware vav,
vSphere
OPENSHIFT kubernetes
Wiware Openshift proect Kilbsrnetes dedaied

== openstack.

Openstack tenant

EPUB/imagessections95.png

