

systemd pour les administrateurs, partie 1 et 2

Posté par ariasuni le 02 août 2014 à 01:36.
Édité par esdeem, Davy Defaud, Sébastien Koechlin, BAud, palm123, j, Benoît Sibaud, Nÿco et tuiu pol.
Modéré par Ontologia.
Licence CC By‑SA.

Étiquettes :

	systemd

	mageia

	debian

	lennart_poettering

	systemd_pour_les_admins

	administration_système

	opensuse

[image: Technologie]

On vous parle depuis longtemps de systemd. On vous dit que c’est très bien. La plupart des distributions l’ont adopté (Fedora, openSUSE, Mageia, Frugalware, Arch, etc.), vont l’adopter (Debian, Ubuntu) ou vous permettent de l’utiliser de manière optionnelle (Gentoo, etc.). Mais, savez‐vous l’utiliser ?

Voici une série d’articles didactiques pour apprendre à utiliser systemd et vous permettre de mieux l’appréhender et de comprendre les avantages qu’il apporte par rapport aux systèmes précédents.

Les informations ci‐dessous sont tirées, traduites et adaptées du blog de Lennart Poettering et sont accessibles dans la langue de Shakespeare aux adresses ci‐dessous :

Sommaire

	Partie 1 : vérifier le démarrage

	Partie 2 : quels services possèdent quels processus ?

Partie 1 : vérifier le démarrage

Comme vous le savez, systemd est le mécanisme d’initialisation de nombreuses distributions. Il est également en cours d’adoption par de nombreuses autres distributions (comme Debian et Ubuntu). systemd fournit une variété de nouvelles fonctionnalités, modifie et facilite les processus d’administration du système.

Cet article est le premier d’une série — dans chacun d’eux, j’essaierai d’expliquer une nouvelle fonctionnalité de systemd. Ces fonctionnalités sont souvent simples. Ces articles devraient donc intéresser un large public. Cependant, de temps en temps, nous plongerons plus en détail dans les nouveautés géniales que systemd apporte.

Traditionnellement, lorsque l’on démarre un système Linux, on voit une liste de petits messages défiler à l’écran. Comme nous travaillons à accélérer et paralléliser le processus de démarrage, ces messages défilent de plus en plus vite et sont de moins en moins lisibles — sans compter que les machines deviennent de plus en plus rapides et que les systèmes de démarrage graphique comme Plymouth masquent carrément ces informations.

Malgré tout, les informations de démarrage restent toujours très utiles parce qu’elles vous montrent, pour chaque service, s’il a réussi à démarrer correctement ou non (à l’aide des indicateurs [OK] verts et [FAILED] rouges). Pour rendre cette information plus accessible, nous avons rajouté une fonctionnalité à systemd qui surveille et enregistre pour chaque service s’il a démarré correctement, s’il s’est terminé avec un code de sortie différent de zéro ou s’il s’est terminé de façon anormale (par erreur de segmentation ou similaire). Et ceci, non seulement au démarrage, mais aussi s’il a un problème par la suite. En tapant simplement systemctl dans votre terminal, vous pouvez interroger l’état de tous les services, tant systemd que SysV/LSB :

[root@lambda] ~# systemctl
UNIT LOAD ACTIVE SUB JOB DESCRIPTION
[…]
netfs.service loaded active exited LSB: Mount and unmount network filesystems.
NetworkManager.service loaded active running Network Manager
ntpd.service loaded maintenance maintenance Network Time Service
polkitd.service loaded active running Policy Manager
prefdm.service loaded active running Display Manager
[…]

LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
JOB = Pending job for the unit.

221 units listed. Pass --all to see inactive units, too.
[root@lambda] ~#

J’ai un peu raccourci la sortie ci‐dessus et supprimé quelques lignes sans intérêt pour cet article.

Regardez la colonne ACTIVE. Elle vous montre l’état général d’un service (ou de n’importe quelle sorte d’unité que systemd maintient, qui peut être plus qu’un service — mais nous y jetterons un œil lors d’un futur article).

Il est soit actif (en cours d’exécution), soit inactif (arrêté), soit dans n’importe quel autre état. Si vous regardez attentivement, vous remarquerez un élément dans la liste étiqueté « maintenance » en rouge (NdT : malheureusement, pas de couleur sur LinuxFr.org !). Ce signalement vous informe qu’un service n’a pu s’exécuter ou a rencontré un problème. Dans le cas présent, il s’agit de ntpd. Regardons maintenant ce qu’il s’est passé avec ntpd grâce la commande systemctl status :

[root@lambda] ~# systemctl status ntpd.service
ntpd.service - Network Time Service
 Loaded: loaded (/etc/systemd/system/ntpd.service)
 Active: maintenance
 Main PID: 953 (code=exited, status=255)
 CGroup: name=systemd:/systemd-1/ntpd.service
[root@lambda] ~#

La sortie nous montre que le service NTP s’est terminé brutalement (il avait alors l’identifiant de processus 953) et nous donne la condition d’erreur exacte : le processus s’est terminé avec le code de sortie 255.

Dans une prochaine version de systemd, nous avons l’intention de le relier à ABRT, dès que cette demande d’amélioration aura été honorée. Alors, lorsque systemctl status vous affichera les informations concernant un service qui aura planté, il vous redirigera directement sur la vidange de plantage (crash dump) adéquate dans ABRT.

Résumé : systemctl et systemctl status sont des remplaçants modernes et sont plus complets que les traditionnels messages d’état des services SysV au démarrage. systemctl status enregistre non seulement plus de détails, mais montre aussi les erreurs qui ont eu lieu après le démarrage.

Partie 2 : quels services possèdent quels processus ?

Sur la plupart des systèmes GNU/Linux, le nombre de processus en fonctionnement est important. Il est de plus en plus difficile de savoir quel processus fait quoi et d’où il vient. Certains ont même plusieurs processus de travail qui surchargent la sortie de ps avec beaucoup de processus additionnels souvent difficiles à reconnaître. Ça se complique encore avec les démons qui lancent des processus tiers, comme Apache le fait avec les processus CGI ou cron avec les tâches utilisateurs.

Souvent, le seul demi‐remède consiste à regarder l’arbre d’héritage des processus tel qu’il est donné par ps xaf, mais ce n’est généralement pas fiable. Les processus orphelins sont réassignés au processus 1 et, par conséquent, toutes les informations d’héritage sont perdues. En faisant deux forks() successifs, un processus peut perdre sa relation avec celui qui l’a lancé (c’est supposé être une fonctionnalité et cela repose sur le comportement traditionnel de création de démons sous UNIX). Par ailleurs, les processus peuvent à leur convenance changer leur nom grâce à PR_SETNAME ou en modifiant argv[0], rendant ainsi leur reconnaissance plus difficile. En fait, ils peuvent ainsi jouer à cache‐cache avec l’administrateur assez aisément.

Avec systemd, nous plaçons chaque processus engendré dans un groupe de contrôle (cgroup) nommé d’après le service. Les groupes de contrôle, du point de vue le plus élémentaire, sont simplement des groupes de processus qui peuvent être classés hiérarchiquement et étiquetés individuellement. Quand des processus engendrent d’autres processus, ces enfants sont automatiquement membres du cgroup de leur parent. Quitter un cgroup n’est pas possible pour un processus sans privilège. C’est pourquoi les cgroups peuvent être utilisés pour étiqueter tous les processus d’un service efficacement et indépendamment du nombre de forks() ou de renommages. En allant plus loin, les cgroups peuvent être utilisés pour tuer proprement un service et tous les processus qu’il a créés, sans exception.

Dans le billet d’aujourd’hui, je veux vous présenter deux commandes permettant de faire le lien entre les services créés par systemd et les processus. La première est la commande bien connue ps, qui a été mise à jour pour afficher les informations cgroup à côté des autres informations. Ça ressemble à ceci :

$ ps xawf -eo pid,user,cgroup,args
 PID USER CGROUP COMMAND
 2 root - [kthreadd]
 3 root - _ [ksoftirqd/0]
4281 root - _ [flush-8:0]
 1 root name=systemd:/systemd-1 /sbin/init
 455 root name=systemd:/systemd-1/sysinit.service /sbin/udevd -d
8188 root name=systemd:/systemd-1/sysinit.service _ /sbin/udevd -d
8191 root name=systemd:/systemd-1/sysinit.service _ /sbin/udevd -d
1131 root name=systemd:/systemd-1/auditd.service auditd
1133 root name=systemd:/systemd-1/auditd.service _ /sbin/audispd
1171 root name=systemd:/systemd-1/NetworkManager.service /usr/sbin/NetworkManager --no-daemon
4028 root name=systemd:/systemd-1/NetworkManager.service _ /sbin/dhclient -d -4 -sf /usr/libex[...]
1193 root name=systemd:/systemd-1/rsyslog.service /sbin/rsyslogd -c 4
1195 root name=systemd:/systemd-1/cups.service cupsd -C /etc/cups/cupsd.conf
1210 root name=systemd:/systemd-1/irqbalance.service irqbalance
1216 root name=systemd:/systemd-1/dbus.service /usr/sbin/modem-manager
1219 root name=systemd:/systemd-1/dbus.service /usr/libexec/polkit-1/polkitd
1332 root name=systemd:/systemd-1/getty@.service/tty2 /sbin/mingetty tty2
1339 root name=systemd:/systemd-1/getty@.service/tty3 /sbin/mingetty tty3
1344 root name=systemd:/systemd-1/crond.service crond
1362 root name=systemd:/systemd-1/sshd.service /usr/sbin/sshd
1376 root name=systemd:/systemd-1/prefdm.service /usr/sbin/gdm-binary -nodaemon
1391 root name=systemd:/systemd-1/prefdm.service _ /usr/libexec/gdm-simple-slave --displa[...]
1394 root name=systemd:/systemd-1/prefdm.service _ /usr/bin/Xorg :0 -nr -verb[...]
1495 root name=systemd:/user/lennart/1 _ pam: gdm-password
1521 lennart name=systemd:/user/lennart/1 _ gnome-session
1621 lennart name=systemd:/user/lennart/1 _ metacity
1635 lennart name=systemd:/user/lennart/1 _ gnome-panel
1638 lennart name=systemd:/user/lennart/1 _ nautilus
1453 root name=systemd:/systemd-1/dbus.service /usr/libexec/upowerd
1473 rtkit name=systemd:/systemd-1/rtkit-daemon.service /usr/libexec/rtkit-daemon

Notez que la sortie est un peu raccourcie. J’ai supprimé la plupart des tâches du noyau ici, car elles n’ont pas d’intérêt pour cet article.

Dans la troisième colonne, vous pouvez voir le cgroup systemd assigné à chaque processus. Vous verrez que les processus udev sont rassemblés dans le cgroup name=systemd:/systemd-1/sysinit.service. C’est le cgroup utilisé pour tous les processus démarrés par le service sysinit.service, qui s’occupe du début du démarrage.

Je recommande personnellement de créer pour la commande ps ci‐dessus l’alias suivant :

alias psc='ps xawf -eo pid,user,cgroup,args'

Avec ce service, les informations sur les processus ne sont plus qu’à quatre touches de distance !

L’outil systemd-cgls fourni avec systemd est un autre moyen de présenter ces mêmes informations. Il affiche la hiérarchie des cgroups sous forme d’arbre. Sa sortie ressemble à ceci :

$ systemd-cgls
+ 2 [kthreadd]
[...]
+ 4281 [flush-8:0]
+ user
| \ lennart
| \ 1
| + 1495 pam: gdm-password
| + 1521 gnome-session
| + 1621 metacity
| + 1635 gnome-panel
| + 1638 nautilus
| \ 29519 systemd-cgls
\ systemd-1
 + 1 /sbin/init
 + rtkit-daemon.service
 | \ 1473 /usr/libexec/rtkit-daemon
 + prefdm.service
 | + 1376 /usr/sbin/gdm-binary -nodaemon
 | + 1391 /usr/libexec/gdm-simple-slave --disp[...]
 | \ 1394 /usr/bin/Xorg :0 -nr -verbose -auth [...]
 + getty@.service
 | + tty3
 | | \ 1339 /sbin/mingetty tty3
 | \ tty2
 | \ 1332 /sbin/mingetty tty2
 + crond.service
 | \ 1344 crond
 + sshd.service
 | \ 1362 /usr/sbin/sshd
 + irqbalance.service
 | \ 1210 irqbalance
 + NetworkManager.service
 | + 1171 /usr/sbin/NetworkManager --no-daemon
 | \ 4028 /sbin/dhclient -d -4 -sf /usr/libexe[...]
 + rsyslog.service
 | \ 1193 /sbin/rsyslogd -c 4
 + cups.service
 | \ 1195 cupsd -C /etc/cups/cupsd.conf
 + auditd.service
 | + 1131 auditd
 | \ 1133 /sbin/audispd
 | \ 1135 /usr/sbin/sedispatch
 \ dbus.service
 + 1216 /usr/sbin/modem-manager
 \ 1219 /usr/libexec/polkit-1/polkitd

Cette sortie est également raccourcie.

Comme vous pouvez le constater, cette commande montre les processus par leur cgroup et ainsi leur service, car systemd nomme les cgroups d’après les services. Par exemple, vous pouvez facilement voir que le service d’audit auditd.service lance trois processus indépendants, auditd, audisp et sedispatch.

Si vous y regardez de plus près, vous remarquerez que plusieurs processus ont été assignés au cgroups /user/1. Pour le moment, restons en là : systemd non seulement maintient des services dans les cgroups, mais aussi les processus de session utilisateur. Dans le prochain épisode, nous parlerons plus en détail de ce sujet.

C’est tout pour aujourd’hui ! La suite au prochain épisode !

Aller plus loin

	
systemd for Administrators, Part 1
(3043 clics)

	
systemd for Administrators, Part 2
(1812 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

