

Tempête dans les nuages : OpenStack et le bazar des API

Posté par GeneralZod le 07 mai 2013 à 11:27.
Édité par Nÿco, Benoît, Katyucha, Xavier Teyssier, Zarmakuizz, Benoît Sibaud, lamiricore, Florent Zara, Jean Gabes et rootix.
Modéré par Xavier Teyssier.
Licence CC By‑SA.

Étiquettes :

	cloud

[image: Internet]

Un des débats qui fait rage parmi les développeurs d'OpenStack réside dans le choix d'un framework commun pour le développement de leurs API. Pour information ou rappel, OpenStack est un moteur de cloud (informatique en nuage) de type IaaS (Infrastructure as a Service) issu de la fusion de la plateforme de cloud de la NASA (projet Nebula) et de Cloud Files de Rackspace (cloud storage), la société texane d'hébergement. Cette pile de logiciels libres est écrite en Python sous licence Apache et s'appuie sur la norme WSGI pour exposer ses APIs.

Pour reprendre une définition donnée par misc : « OpenStack, c'est beaucoup de choses, c'est un groupe de logiciels visant à gérer un nombre massif de machines virtuelles. En gros, tu rajoutes des serveurs, et OpenStack va faire tout seul le fait de rajouter des VM à la demande, via une API. API qu'on peut donc utiliser dans une interface web, ou via un script. » OpenStack se veut le concurrent open source de la plateforme propriétaire Amazon Web Services.

[image: OpenStack]

(source)

La dernière version d'OpenStack (nom de code : Grizzly) a été publié le 4 avril 2013 et offrait les composants suivants :

	Nova : gestion d'instances de calculs

	Swift : stockage d'objets

	Cinder : gestion de volumes blocs

	Keystone : authentification

	Quantum : gestion de réseaux virtualisés

	Dashboard : framework fournissant une interface d'administration web extensible basé sur Django

	Ceilometer : collecte de métriques

	Heat : orchestration

Les API : un point clé

À l'heure actuelle, tous ces composants proposent une API REST native ainsi qu'une API offrant une compatibilité plus ou moins complète avec le leader du marché : Amazon Web Services.

Les API sont un point crucial pour le projet OpenStack, elles sont massivement utilisées à la fois en interne et par les utilisateurs finaux comme on peut le voir dans le diagramme ci-dessous.

[image: Architecture OpenStack]

(source)

Les frameworks actuellement en compétition

Deux compétiteurs sont actuellement en cours de discussions sur la liste.

Falcon

Falcon développé par Kurt Griffiths de Rackspace et annoncé comme étant un micro-framework pour développer des API supersonique pour le cloud (rien de moins que ça !). Il est utilisé dans le projet Marconi qui vise à fournir un service de messages queueing dans OpenStack.

[image: Falcon]

Pecan et WSME

Pecan & WSME proposé par Doug Hellman, mainteneur du projet Ceilometer.

[image: pecan]

[image: WSME]

État des lieux

Actuellement, Nova utilise eventlet pour la partie réseau et Webob pour gérer les objets requêtes/réponses HTTP.

code middleware WSGI dans Nova

Swift quant à lui redéfinit ses propres objets requêtes/réponses HTTP.

code middleware WSGI dans Swift

code Requêtes/Réponses WSGI: SWOB

Ceilometer utilisait Flask pour la version 1 de son API puis Pecan/WSME pour la version 2

code de l'API v1

code l'API v2

On notera que pour des raisons de stabilité, quelque soit la solution choisie au final, les API existantes ne seront pas réécrites. Par exemple, dans le cas de Ceilometer, si Falcon était choisi, la v1 continuerait à utiliser Flask, la v2 Pecan/WSME, la v3 utiliserait Falcon. Les versions 1 & 2 continueraient à être distribuées pendant un certain temps.

OpenStack, Bazar et retours d'expériences

Bref, OpenStack est un vrai projet Bazar. La publication par Rackspace de Falcon a relancé le débat. Un point extrêmement intéressant est le retour d'expérience sur les différents frameworks WSGI dans des configurations massivement parallèles.

Éléments requis

Pour OpenStack, plusieurs critères comptent :

	performance ;

	listes de dépendances maitrisable;

	prise en charge de Python 3 ;

	possibilité de configurer les API sans trop de difficultés.

Possibilités

Falcon a été développé dans cette optique-là, la suite de benchmarks publiée montre qu'il bat à plate couture l'ensemble des frameworks existants (et ce, sans extensions natives). Il ne requiert que l'interpréteur Python et le package six permettant la prise en charge de Python 2.7 & 3.3+ à l'aide d'une même base de code. Néanmoins, il a pour inconvénient d'être justement trop léger au niveau des fonctionnalités pour développer une API REST de manière confortable.

Pecan est quant à lui un micro-framework WSGI encore peu connu, mais qui évolue très rapidement. Il a été créé pour faciliter le développement d'application RESTful sans fioritures. Il s'inspire ouvertement de CherryPy/TurboGears 1 et a le bon goût de s'appuyer sur WebOb qui pour le moment semble faire l'unanimité autour de lui (même l'exception SWOB s'en inspire ouvertement).

Quant à WSME c'est une réimplémentation des contrôleurs REST de TurboGears 1 (un des points forts de ce vénérable framework) destinée à être intégrée à d'autres frameworks (Pecan, Flask, Bottle, Pyramid via l'excellente extension Cornice, etc.). Le combo est relativement jeune mais tire profit de plusieurs années de retour d'expérience. L'inconvénient est que c'est une solution relativement intrusive qui, de l'aveu de Doug Hellman, peut difficilement être réalisée de manière incrémentale, elle influencera également la manière dont sont conçues les API.

L'apparition de Falcon a été également l'occasion de redonner un coup de fouet à la quête de performances pour Pecan. Ryan Petrello (DreamHost) a pu améliorer de 30% les résultats de Pecan par rapport aux benchmarks publiés par Falcon en quelques heures de travail.

Tempête de cerveaux

Pour le moment rien n'est décidé, le débat continue encore sur la liste openstack-dev à propos de l'implémentation de la nouvelle API de Nova.

Doug Hellman s'appuie sur les acquis du projet Ceilometer pour promouvoir l'utilisation de Pecan/WSME, et Kurt Griffiths a pour lui l'appui de Rackspace, fondateur du projet.

Une affaire à suivre…

Aller plus loin

	
Projet OpenStack
(246 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/00edd7889d0737f93b1f6d9fcd45aea5df5ea5e3bf87e993caa80c5d.png
Falcon

The high-performance cloud API framework.

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/d3cabfdbc407f38cf0db9a8b16feaf176b1128ff268882878ca2980d.png
pecan

EPUB/d9e78724155cb601c1bc38a4d6d18a0609d21a035fd88bd44a70f66c.png
openstack

CLOUD SOFTWARE

EPUB/32ed7226ba1485be95329d22ef3dc52b518cfe6b56baac4a47d5ae49.jpg
account

OpenStack
Object API

HTTPIS)

Opensmlz
Object API

OpenStack
Object API

container

http:/ken.pepple.info

~
OpenStack
Identity APL

/
OpenStack

ldentity
AR

OpenStack
Image Service

token backend
(kvs, memcache,
ete.)

OpenStack End Users

HTTRS)

OpenStack
OpenStack Compute API
Image AP VNC/VMRC
Wﬂiaaxaas Openst
e penStack
- —-oh_ _H2mn Block Storage APl
B OpenStack
2 L Network APl — _
OpenStack i ~-—_
Image APl \\\\ -~
/ =
/ OpenStack
/7 " Block Storage API A ————
OpenStack Compute, T -
OIzMS?ack " AP/ N
ldentity Adwin API el
APl v g
y ! e
1 -
1
! . N S, =
hova-api / N
! / N
L Br - D = P\ S E2 Adwin) K nova-consale
J

OpenStack

keystone

/ ”

libvirt, XenAPI, ete.

1

I

I —

|

\ i nova

\ hypervisor database
\

\ ~
\ /
\\Q nova-consoleauth > nova-volume

\
\ nova-network
\ nova-scheduler Volome
\‘ pre dzr)
OpenStack o
! network
“va provider

(service & admin APls)

catalog

backend

(kvs, sql,
ete.)

poliey identity

backend backend

(kvs, pam, sql,
(rules, custom) dap.ete)

nova-compute Yhe— _ _ - f ————\
1 / 1 nova-cert/
obiectstore /

OpenStack
Block Storage Service

—— OpenStack Compute

OpenStack

OpenStack
Network API

quantum
agentl(s)

Olzznsmk -

ldentity
- AR

quantum
pluginls)

OpenStack
Network Service

EPUB/imagessections22.png

EPUB/fbfe8518985c2fdd28d1b1773c2a5a4e9829a875d468f4168267c4f4.png
Web Services Made Easy

