

Travailler avec des expressions rationnelles

Posté par Denis Dordoigne le 08 février 2016 à 07:55.
Édité par Davy Defaud, Benoît Sibaud, Nÿco, Lucas, palm123, esdeem, Michaël, Stéphane Aulery, Xavier Teyssier, Jiel, Kwiknclean, anaseto, Jiehong, ranDom, Nicolas Casanova, Ontologia, Trollgouin et BAud.
Modéré par patrick_g.
Licence CC By‑SA.

Étiquettes :

	regex

	grep

	sed

	vi

	emacs

[image: Technologie]

Les expressions rationnelles sont un outil d’analyse de texte par un ordinateur. Elles permettent de décrire des enchaînements de caractères d’une complexité suffisamment grande pour être réellement utiles, mais suffisamment faible pour être implémentées efficacement. Elles sont d’une importance capitale pour le théoricien des langages comme pour l’UNIX power user.

Dans cette dépêche, nous :

	décrivons brièvement la notion abstraite d’expression rationnelle et recensons les implémentations les plus courantes sur un système Unix ;

	présentons quelques commandes permettant de rechercher des motifs décrits par une expression rationnelle dans un texte, réécrire des fichiers automatiquement ou transformer et analyser des fichiers structurés automatiquement en utilisant des expressions rationnelles ;

	montrons comment améliorer votre productivité avec Emacs grâce aux expressions rationnelles.

Dans cette dépêche, nous allons nous pencher sur les expressions rationnelles (souvent nommées abusivement expressions régulières suite à une traduction littérale de regular expression). Elles permettent de représenter formellement un motif de recherche, par exemple : un caractère alphabétique majuscule suivi de quatre caractères minuscules, puis deux chiffres et un point à la fin. Les expressions rationnelles représentent un outil puissant pour qui sait les utiliser à bon escient mais nécessitent une phase d’apprentissage non négligeable. La diversité des moteurs et des syntaxes n’aide pas non plus à leur simplicité, et les confusions entre les différents outils peuvent parfois donner des résultats surprenants.

Sommaire

	Description abstraite et implémentations principales

	
Les expressions rationnelles POSIX basiques
	La commande grep

	Utiliser dans vi

	
Extension des expressions rationnelles
	grep est mieux avec « -E »

	Les classes de caractères

	
Pour aller plus loin
	Attention au GLOB

	Outils pour tester vos expressions rationnelles

	Ne pas toujours utiliser les expressions rationnelles

	Jouer avec les expressions rationnelles

	
Un peu de théorie
	Les automates finis

	Littérature

[image: Expressions régulières]
Source : original en VO XKCD, traduction en VF

Description abstraite et implémentations principales

Les expressions rationnelles sont souvent utilisées comme brique de l’analyse des textes, pour faire de l’analyse lexicale. Elles sont issues des théories mathématiques des langages formels.

Le concept ayant montré sa pertinence, il faut faire face à une richesse des implémentations : POSIX, puis chaque Unix à sa version, GNU, FreeBSD, puis Perl et Emacs, pour les plus répandues. Certaines apportent des extensions (sucre syntaxique +, répétitions, groupes, et back tracking).

Wikipédia fournit divers exemples illustratifs. En voici quelques exemples variés :

	recherche de motif avec grep pour avoir un filtre pour sélectionner des lignes, pour identifier des fichiers, pour sélectionner des journaux système à une certaine date ou pour rechercher dans les pages de manuel, etc. ;

	avec sed, transformation de journaux système en format Apache en format tabulaire, transformation de la sortie de Docker, ps, etc. ;

	dans Emacs, mettre en valeur un motif dans du code pour une revue ou pour l’édition, extraire des listes d’un fichier avec re-search, etc.

Les expressions rationnelles POSIX basiques

Les expressions rationelles POSIX génèrent des machines à état fini déterministe. Elles ne sont ainsi pas capables de faire des retours en arrière.

La commande grep

Le premier usage des expressions rationnelles pour les utilisateurs de systèmes basés sur GNU/Linux ou Unix est en général la commande grep, qui permet de trouver toutes les lignes correspondant à une expression rationnelle. La syntaxe de la commande grep est simplement :

grep <options> <expression rationnelle> <liste de fichiers>

Pour les exemples ci‐dessous, nous ferons des recherches dans le fichier french d’une Debian stable (paquet wfrench qui amène le fichier /usr/share/dict/french, [informations de licence]), ce fichier contenant la liste des mots de la langue française à raison d’un mot par ligne.

Dans une expression rationnelle, la première règle est que chaque caractère se représente lui‐même, par exemple l’expression rationnelle « rationnelle » correspond à « toute ligne contenant un r, suivi d’un a, suivi d’un t, suivi d’un i, suivi d’un o, suivi d’un n, suivi d’un autre n, suivi d’un e, suivi d’un l, suivi d’un autre l, suivi d’un e, suivi d’un s » :
[image: $ grep 'rationnelles' french

irrationnelles

opérationnelles

rationnelles]

Chaque caractère ne représente pas vraiment lui‐même, il existe des exceptions avec des méta‐caractères qui décrivent autre chose qu’eux‐mêmes. Un des plus utilisés de ces méta‐caractères est le point, qui signifie « un caractère quelconque », par exemple l’expression rationnelle « rationnelle. » correspond à « toute ligne contenant un r, suivi d’un a, suivi d’un t, suivi d’un i, suivi d’un o, suivi d’un n, suivi d’un autre n, suivi d’un e, suivi d’un l, suivi d’un autre l, suivi d’un e, suivi d’un caractère quelconque » :
[image: $ grep 'rationnelle.' french

irrationnelles

opérationnelles

irrationnellement

rationnelles]

Le problème des méta‐caractères est qu’on peut vouloir chercher du texte les contenant. Par exemple, dans notre dictionnaire, il y a des abréviations se terminant par un point. Pour qu’un méta‐caractère ne soit pas interprété, il faut le précéder d’une contre‐oblique « \ », par exemple « \. » représente le caractère point. On peut alors s’amuser à chercher les abréviations d’au moins six caractères, en les décrivant comme « un caractère quelconque, suivi d’un autre caractère quelconque, suivi d’un troisième caractère quelconque, suivi d’un quatrième caractère quelconque, suivi d’un cinquième caractère quelconque, suivi d’un sixième caractère quelconque, suivi d’un point » :
[image: $ grep '......\.' french

arrond.

c.‐à‐d.]

On remarquera que le point lui‐même est un caractère quelconque.

Un autre méta‐caractère utile est le crochet, qui permet de décrire un caractère pouvant correspondre à plusieurs valeurs, par exemple une voyelle non accentuée peut être représentée par « [aeiouy] » (qu’on peut lire comme « n’importe quel caractère étant soit un a, soit un e, soit un i, soit un u, soit un y »). Par exemple, si vous voulez briller en société en citant des mots comportant six voyelles non accentuées à la suite :
[image: $ grep '[aeiouy][aeiouy][aeiouy][aeiouy][aeiouy][aeiouy]' french

rougeoyaient

youyou

youyous]

Deux méta‐caractères particuliers sont utiles entre crochets :

	le tiret situé entre deux caractères permet de définir une liste de caractères qui se suivent, par exemple « [a-f] » définit « soit un a, soit un b, soit un c, soit un d, soit un e, soit un f » ;

	l’accent circonflexe situé au début permet de définir une exclusion de caractères, par exemple « [\^aeiouy] » définit « un quelconque caractère qui ne soit ni un a, ni un e, ni un i, ni un o, ni un u, ni un y »).
Ces deux méta‐caractères sont cumulables, par exemple « [\^a-z] » définit « un quelconque caractère qui ne soit pas une lettre minuscule non accentuée », ce qui peut nous permettre de trouver tous les mots qui ont à la suite deux caractères qui ne sont pas des lettres :
[image: $ grep '[^a-z][^a-z]' french
c.‐à‐d.
ch.-l.]

On peut économiser les copier‐coller lorsque l’on veut chercher plusieurs fois la même information, en utilisant le symbole « \{min,max\} » qui permet d'indiquer que l’on cherche la présence d’un caractère successivement entre min et max fois, par exemple si vous cherchez les mots contenant deux q séparés par 5 à 7 lettres [1] :
[image: $ grep 'q[a-z]\{5,7\}q' french

quantique

quantiques

quelconque

quelconques

quiconque

quiproquo

quiproquos

squelettique

squelettiques]

Il est possible avec certaines versions de grep de spécifier un seul chiffre entre accolades :

	si l’on cherche exactement x occurrences, on indique : « \{x\} » ;

	si l’on cherche de 0 à x occurrences, on indique : « \{,x\} » ;

	si l’on cherche au moins x occurrences, on indique : « \{x,\} ».
Ainsi, on pourrait donc abréger la recherche des mots contenant 6 voyelles non accentuées ainsi :
[image: $ grep '[aeiouy]\{6\}' french
rougeoyaient
youyou
youyous]

Si l’on veut répéter plusieurs caractères au lieu d’un seul, il faut encadrer la recherche avec des « \(\) ». Par exemple, si vous bloquez dans une grille de mots croisés sur la définition « mot contenant sept fois à la suite une consonne suivie d’une voyelle » :
[image: $ grep '\([^aeiouy][aeiouy]\)\{7\}' french

remilitarisation

]

Le contenu trouvé à partir d’une expression entre parenthèses est dit « capturé », cela signifie qu’il est gardé en mémoire et peut être réutilisé dans l’expression rationnelle. La contenu capturé est accessible en utilisant « \1 », « \2 », « \3 », etc. (en général, on ne peut pas dépasser \9). Le numéro de capture est défini en comptant le nombre de parenthèses ouvrantes précédant l’expression capturée. Cela permet par exemple de lister les mots contenant un palindrome de quatre lettres :
[image: $ grep '\(.\)\(.\)\(.\)\(.\)\4\3\2\1' french

caressera

caresserai

caresseraient

caresserais

caresserait

caresseras

paressera

paresserai

paresseraient

paresserais

paresserait

paresseras

querellerez]

On peut encore affiner les recherches en utilisant les ancres, qui permettent de situer où se situe une expression rationnelle dans la ligne :

	le dollar, lorsqu’il est situé à la fin de l’expression rationnelle, représente la fin de la ligne ;

	l’accent circonflexe, lorsqu’il est situé au début de l’expression rationnelle, représente le début de la ligne.

On peut cumuler les deux ancres dans la même expression, par exemple si l’on veut chercher les vrais palindromes de quatre lettres :
[image: `{mathjax} grep '^\(.\)\(.\)\2\1`' french

alla

elle

erre

esse]

Pour en terminer avec les expressions rationnelles POSIX basiques, il ne reste plus qu’un méta‐caractère à présenter, qui est l’astérisque. Ce caractère est équivalent à « \{0,\} » :
[image: `{mathjax} grep '^d.*ouilles`' french

débrouilles

dépouilles

douilles]

Utiliser dans vi

VimRegex détaille largement le sujet.

Extension des expressions rationnelles

Les extensions rationnelles basiques étant peu lisibles, la norme POSIX a évolué pour intégrer les expressions rationnelles étendues, aussi appelées « ERE ».

grep est mieux avec « -E »

Les versions récentes de grep permettent d’utiliser les expressions rationnelles étendues avec l’option -E. Si vous ajoutez l’option -E à grep, vous devez modifier votre expression rationnelle ainsi :

	
\{ et \} deviennent { et } ;

	
\(et \) deviennent (et) ;

	tous les autres méta‐caractères (« . », « [», «] », « - », « ^ », « $ », « * », « \1 », etc.) sont inchangés.

Outre cette suppression des contre‐obliques superflus, les expressions rationnelles étendues apportent trois nouveaux méta‐caractères. Le premier est « ? » qui est un synonyme de « {0,1} », qui permet par exemple de chercher les palindromes de 4 ou 6 lettres avec une seule expression :
[image:

`{mathjax} grep -E '^(.)(.)((.)\4)?\2\1`' french

alla

elle

erre

esse

selles

serres]

On dispose aussi de « + » qui est un synonyme de « {1,} » :
[image: `{mathjax} grep -E '^cré+e`' french

crée

créée

]

Enfin, le dernier méta‐caractère spécifique aux expressions rationnelles étendues est le « | » qui permet de séparer plusieurs options :
[image: `{mathjax} grep -E '^(gr|f|citr)ouille`' french

citrouille

fouille

grouille]

Les classes de caractères

POSIX prévoit des classes de caractère, qui sont des notations spécifiques entre crochets. À noter que les classes de caractères sont aussi bien gérées par les expressions rationnelles basiques qu’étendues (il n’y a donc pas besoin d’utiliser l’option -E pour en bénéficier), mais il existe des implémentations d’expressions rationnelles basiques non compatibles POSIX qui ne les acceptent pas.

Les classes de caractères sont des mots ou abréviations en anglais désignant ce à quoi ils correspondent et encadrés par « [: » et « :] » :

	
[:digit:] : désigne un chiffre décimal (équivalent à [0-9]) ;

	
[:lower:] : désigne une lettre minuscule (équivalent à [a-z]) ;

	
[:upper:] : désigne une lettre majuscule (équivalent à [A-Z]) ;

	
[:alpha:] : désigne une lettre minuscule ou majuscule (équivalent à [A-Za-z]) ;

	
[:alnum:] : désigne une lettre minuscule ou majuscule ou un chiffre (équivalent à [A-Za-z0-9]) ;

	
[:xdigit:] : désigne un chiffre hexadécimal (équivalent à [0-9a-fA-F]) ;

	
[:space:] : désigne un caractère d’espacement (espace, tabulation, retour chariot, etc.) ;

	
[:blank:] : désigne un espace ou une tabulation horizontale (à ne pas confondre avec [:space:]) ;

	
[:punct:] : désigne à un crochet ou un caractère de la classe suivante : ['!"#$%&()*+,./:;<=>?@\^_{|}~-]` ;

	
[:cntrl:] : désigne un caractère de contrôle ;

	
[:print:] : désigne un caractère affichable (ainsi qu’une espace), cette classe est à peu près le contraire de [:cntrl:] ;

	
[:graph:] : désigne l’ensemble des caractères visibles, sauf les espaces, les caractères de contrôle, etc. (équivalent à [\x21-\x7E]).

Pour aller plus loin

Attention au GLOB

Dans les exemples précédents, il était important d’utiliser de simples apostrophes pour éviter l’interprétation de caractères spéciaux par le Shell.

Outils pour tester vos expressions rationnelles

Plusieurs outils s’offrent à vous pour tester et triturer dans tous les sens vos expressions rationnelles, comme par exemple le site Regex Pal, qui propose notamment de la coloration syntaxique et se veut « temps réel » dans les modifications, ou regex101 qui permet de tester des expressions rationnelles Python, JavaScript ou PCRE.

Ne pas toujours utiliser les expressions rationnelles

Les expressions rationnelles ne sont par exemple pas l’outil idéal pour analyser du XML ou du HTML.

Jouer avec les expressions rationnelles

Voir la dépêche Regexcrossword : un subtil mélange de sudoku et de mots croisés, à la sauce Regex, ainsi que la chasse au trésor du MIT en 2014, etc.

Un peu de théorie

Les automates finis

La base théorique des expressions rationnelles se trouve dans la théorie des langages. Elles permettent notamment de décrire les langages rationnels. Elles sont fortement liées aux automates finis.

Pour illustrer le parallèle nous allons utiliser les caractères et les quantificateurs de base :

	
a qui permet de reconnaître la lettre a ;

	
? qui permet de définir un groupe optionnel ;

	
* qui permet de définir un groupe se répétant zéro fois ou plus ;

	
+ qui permet de définir un groupe se répétant une fois ou plus.

Littérature

	une des ressources en ligne indispensables sur les moteurs d’expressions rationnelles se trouve sur le site de Russ Cox : https://swtch.com/~rsc/regexp/ ;

	un vieil article de Mark‐Jason Dominus explique le fonctionnement des expressions rationnelles et leur application dans Perl ;

	une implémentation expliquée d’un moteur d’expressions rationnelles est disponible dans un cours de l’Université de Vancouver.

[1] Avec ça vous allez vraiment briller en société, il faudra juste trouver un moyen d’intégrer ça dans la conversation.

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/62afffc2fa1013f3592fb769264db534a8cf4a97dcc52c10814d044a.png
french

EPUB/def0773879f0569f15bb4f2cdb7273cbf1f54a30c7267bad1a05ebac.png

EPUB/691003b298d276b4109ba8a34d83217db132b6f3467f1d147973b643.png
uy] [aeiouy | [[aciouy M2 00

EPUB/fdd503c934f0f019d1cdb22e7f608af8dd1ab8f20b08c2a06759694e.png
() (=) C(HM) french

EPUB/9c222118706c2039862755c7c8baa1f5122ef6d593fb45ef55e9f916.gif
04 NON ¢ LE TUEGR A
o LA SUIVRE SUR SON
UIEU DE VACANCES

JAPPRENDS QUELGUE CHOSE
OF NOUVEAL, JIMAGINE oE5

scéNARIos ELABORES 00 CA. !
ME PERMET OE DEVENIR LE
4ER0S 00 JUR. f

MAIS POUR LES TROUVER IL FAUSRA FOUILLER
PARMI 200 M D'EMAILS EN CHERCHANT QUELQUE
CHOSE QU AURAIT LE FORMAT 0'UNE ASRESSE |

!
? %i\\ CET SANS ESPOIR ¢

QUE TOUT LE MONDE RECULE !

]

(JF SAIS ME SERVIR 0Es.
[ExPRESSIONS REGULIERES,

EPUB/2f7d1949307035ffac4bc8bb46a7404708cc6c0426e2ceb6789c7bcc.png
french

EPUB/d3b239bdc1bc6c35185e8559ace60ef5e89122ba03697d917f543854.png
$ grep 'BERR &' french

EPUB/ed1585bbe80eb02dd454e06c551b8ae8adbf4963875023be5f4c2b6e.png

EPUB/2aa9c0753e1cb5c4c163c2a3103eb1fd66a8caab7d2c9988c9d98161.png
french

EPUB/a991cbc89b68742627406354fd231857e0c10095c5eb59f7ca0f4296.png

EPUB/5b2fe475ccf8fcc5693b0a30fd33f3b6364eb5a94a7c0025f5781921.png
french

EPUB/ddaefd1b82d9db62d0c09f7e03595483bd082d9adecdceda3a5ce332.png

EPUB/9beffd9a23f29f50a9c82f526af3854cd85e625a67dd3504c12431f4.png
s grep '[EERICAREAY]’ french

EPUB/95f999cd8536d28b339ded0d883cdff6361ceb9f98754bbfdd398e9a.png

EPUB/faeb4698fb5786755caa0fbb71ca002d1358da5c289f7cf3d3b9ae04.png

EPUB/imagessections50.png

