

Trois utilitaires : Delta, Dust et Watchexec

Posté par Bruno Michel (site web personnel) le 11 mai 2020 à 14:40.
Édité par Xavier Teyssier, Davy Defaud et Benoît Sibaud.
Modéré par Xavier Teyssier.
Licence CC By‑SA.

Étiquettes :

	delta

	dust

	watchexec

	rust

	notifications

[image: Ligne de commande]

J’avais présenté, il y a quelque temps, trois utilitaires écrits en Rust pour remplacer grep, ls et find (à savoir ripgrep, exa et fd). Cette dépêche est l’occasion de présenter trois nouveaux utilitaires également écrits en Rust : delta, dust et watchexec.

delta

delta permet de mettre de la coloration syntaxique dans les diffs, et notamment ceux produits par Git. Il affiche avec un fond vert ce qui a été ajouté et avec un fond rouge ce qui a été supprimé, mais il met également en couleur les mots‑clés, opérateurs et structures propres à chaque langage de programmation. La coloration syntaxique provient de bat, et comme celui‑ci, il offre différents thèmes pour s’adapter aux goûts de chacun.

[image: Capture d’écran de delta]

Dust

Dust s’inspire de l’utilitaire du. Il apporte du confort quand on veut trouver quels répertoires prennent de la place, grâce à quelques astuces :

	il fait automatiquement le tri, pas besoin de recourir à sort ;

	il va également afficher les gros sous‑répertoires, pas seulement les répertoires de premier niveau ;

	son affichage graphique permet de mieux voir où l’espace est pris.

[image: Capture d’écran de Dust]

watchexec

watchexec permet de lancer des commandes dès qu’un fichier est modifié. C’est pratique pour relancer des tests, une compilation ou un serveur pour un développeur. Il s’appuie sur inotify sous GNU/Linux et ses équivalents pour macOS et Windows. Voici quelques exemples d’invocation :

	
watchexec make permet de lancer la commande make dès qu’un fichier est ajouté ou modifié dans le répertoire courant ;

	
watchexec -w src -w spec rspec permet de lancer des tests avec rspec dès qu’un fichier présent dans src ou dans spec est modifié ;

	
watchexec -e py -r python server.py permet de lancer ou relancer un serveur Python dès qu’un fichier avec l’extension .py est modifié.

Aller plus loin

	
Des alternatives à grep, ls et find
(247 clics)

	
Delta
(275 clics)

	
Dust
(416 clics)

	
Watchexec
(189 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/1fe67bdac5f1d3fdf4f8578254f7188dcd13fca065c7f8a4cd5abf7e.png
$
9
10

dust
0201

— registry

194

cargo
— entries
cache?
hlifv2zf.default
firefox

mozilla

cache

— lib
nightly-x86_64-unknown-Llinux-gnu
toolchains

rustup
— target
hack
rust

dev
— LoversInADangerousSpacetine Data
Lovers in a Dangerous Spacetime
— dist

Proton 3.7

— assets

Xenonauts

common

steamapps

steam

steam

EPUB/8ca1e59babe1ed693f7ff1625b14e89d5adc3a538508fc4ee53342a2.png
jedi/evaluate/names.py

class AbstractNameDefinition(object):

28
return {self}

@abstractmethod

def get_qualified_names(self):

def get_qualified_names(self, include_module_names=False):
raise NotImplementedError

def get_root_context(self):

class AbstractTreeName(AbstractNameDefinition):

53
self.parent_context = parent_context
self.tree_name = tree_name

def get_qualified_names(self):
def get_qualified_names(self, include_module_names=False):
import_node = search_ancestor(self.tree_name, 'import_name', 'import_from')
if import_node is not None:
return tuple(n.value for n in import_node.get_path_for_name(self.tree_name))

parent_names = self.parent_context.get_qualified_names()
if parent_names is None:
return None
return parent_names + [self.tree_name.value]
parent_names += (self.tree_name.value,)
f include_module_names:
module_names = self.get_root_context().string_names
if module_names is None:
return None
return module_names + parent_names
return parent_names

=t

def goto(self):
return self.parent_context.evaluator.goto(self.parent_context, self.tree_name)

EPUB/imagessections72.png

