

TuxMake et le noyau Linux

Posté par Rémi Duraffort (site web personnel) le 09 mars 2022 à 23:49.
Édité par palm123, Pierre Jarillon, Ysabeau 🧶 et Julien Jorge.
Modéré par Xavier Teyssier.
Licence CC By‑SA.

Étiquettes :

	linux

	compilation

	toolchain

	testing

	ci

	lwn

	openpower

[image: Linux]

La compilation du noyau Linux est souvent présentée comme étant triviale : un appel à make et c’est réglé.

Cependant les choses se compliquent vite si l’on souhaite :

	cross-compiler

	utiliser différentes toolchains (ou versions)

	reproduire une compilation sur une autre machine

	utiliser une toolchain non-supportée par sa distribution

	…

En connaissant bien le fonctionnement de sa distribution et les règles de compilations du noyau Linux, c’est tout à fait faisable même si cela reste fastidieux. D’ailleurs, beaucoup de développeurs du noyau possèdent un jeu de scripts maison pour cela.

Afin de rendre cela accessible à tous, Linaro a créé et maintient TuxMake.

Exemples

Grâce à TuxMake, il est maintenant très simple de cross-compiler :

git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
cd linux/
tuxmake --runtime podman --target-arch=arm64 --toolchain=gcc-10

En une commande, nous venons de cross-compiler mainline avec GCC version 10 pour arm64. Les artefacts de la compilation sont disponibles dans ~/.cache/tuxmake/builds/<id>/.

Il est également facile de définir une variable dans la configuration du noyau :

tuxmake […] --kconfig-add CONFIG_KVM_GUEST=y

Ou encore utiliser un fichier de configuration qui sera ajouté au defconfig :

tuxmake […] --kconfig-add https://git.buildroot.net/buildroot/plain/board/qemu/aarch64-sbsa/linux.config

En bonus, à la fin de la compilation, TuxMake fournit un ensemble de metadata à propos de la compilation, comme la durée de chaque étape, les tailles des différents binaires, la configuration exacte…

cat ~/.cache/tuxmake/builds/<id>/metadata.json | jq

Une histoire de runtimes

Par défaut, TuxMake utilise les toolchains installés localement. Mais afin de diminuer le nombre de dépendances et de faciliter la reproduction d’une compilation d’une machine à une autre, TuxMake peut utiliser podman (ou docker). Dans ce cas, TuxMake télécharge une image contenant la toolchain sélectionnée et l’utilise pour la compilation. Pour des raisons de sécurité, nous recommandons d’utiliser podman en lieu et place de docker afin d’exécuter les images sans droits root (rootless containers).

Les images de containers sont créées et maintenues par les développeurs de TuxMake. Celles-ci sont hébergées sur docker hub et ECR.

Chaque mois, les images sont automatiquement et intégralement recréées afin d’inclure les dernières mises à jour.

Toolchains et targets

TuxMake supporte un grand nombre de toolchains :

	clang (10, 11, 12, 13, 14, Android, nightly)

	gcc (8, 9, 10 et 11)

	Rust (clang ou gcc)

et d’architectures :

	arm et arm64

	i386 et x86_64

	mips, powerpc, riscv, s390, sh, sparc

	hexagon, openrisc, parisc, UM (User Mode Linux)

Évidement toutes les toolchains ne supportent pas toutes les architectures. La matrice de support complète est disponible :

tuxmake --runtime podman --print-support-matrix

Clang-nightly

Clang-nightly est une toolchain particulière. Contrairement aux autres toolchains, celle-ci est reconstruite chaque jour et inclut la dernière version de clang et LLVM. Ceci permet à l’équipe de ClangBuiltLinux, qui utilise intensivement TuxMake, de valider que clang et LLVM sont à même de compiler le noyau Linux.

Une multitude de versions

TuxMake fournit des images pour un grand nombre de versions de chaque toolchains : 4 pour GCC et 7 pour clang. Cela est malheureusement nécessaire, car de nombreuses régressions sont trouvés en compilant le noyau linux avec différentes versions de la même toolchain.

Reproduire un build

Tuxmake est utilisé, via TuxBuild notre service de compilation dans le cloud, par le projet LKFT (Linux Kernel Functional Testing) de Linaro. Lorsqu’une régression est détectée, il suffit de fournir :

	le répertoire git testé

	le hash de HEAD

	la commande TuxMake

Les développeurs du noyau sont alors à même de reproduire et de corriger les régressions détectées par LKFT. Cela semble trivial mais reproduire une erreur de compilation est souvent compliqué car cela peut dépendre d’une version particulière d’une dépendance, par exemple pahole.

Un exemple parmi tant d’autres : mips: cavium_octeon_defconfig.

Et chez moi

TuxMake étant un programme Python, il est possible de l’installer depuis pypi :

python3 -m pip install tuxmake

Nous fournissons également un paquet Debian et rpm.

Présentations

Un article très complet a déjà été écrit sur LWN à propos de TuxMake.

Vous pouvez aussi voir la présentation faite par Antonio Terceiro, le créateur de TuxMake, au Linaro Virtual Connect 21.

Aller plus loin

	
TuxMake
(76 clics)

	
Linaro
(36 clics)

	
Podman
(34 clics)

	
LKFT
(33 clics)

	
Portable and reproducible kernel builds with TuxMake
(48 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections1.png

