

Une faille nommée « shellshock »

Posté par Collectif le 28 septembre 2014 à 23:22.
Édité par bubar🦥, Benoît Sibaud, esdeem, Altor, david.g, Salk, Bruno Michel, Maxime, palm123 et BAud.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	bash

	cve-2014-6271

	cve-2014-7169

	shellshock

	sécurité

	cve

	vulnérabilité

[image: Sécurité]

« ShellShock », une faille dans l'usage du shell Bash, est sous les projecteurs depuis quelques jours. Le terme est un jeu de mot entre la stupeur propre à l'obusite des combattants de la première guerre mondiale et l'interface système shell. Nous vous proposons des explications sur cet évènement particulier, son périmètre, les conditions de son exploitation, les surfaces d'attaques, et les solutions proposées, déjà mises en œuvre ou à venir. Enfin, une revue de presse sera dressée, cette faille s'étant transformée en évènement.

Sommaire

	
	Contexte et histoire

	
Quelques explications
	Explications techniques

	Surfaces d'attaques et exploitabilité

	Chronologie des évènements

	
Solutions mises en œuvre
	
Correctifs disponibles et annonces des distributions
	La faille, CVE-2014-6271

	Le second problème, CVE-2014-7169

	
Les CVE-2014-6277, CVE-2014-7186 et CVE-2014-7187 ne sont pas publics à ce jour (infos chez Redhat 0, 1 et 2).

	mod_security, le filtrage

	Le cas FreeBSD

	Revue de presse

	Conclusion

Contexte et histoire

Bash est l'interpréteur par défaut du projet GNU, c'est une amélioration du Shell Bourne, reprenant des idées du Korn Shell (ksh). Il est développé depuis 1988 et n'a cessé de s'améliorer.

Bash est le shell par défaut d'un grand nombre de distributions GNU/Linux, mais pas toutes. Par exemple Ubuntu ne lance pas Bash avec son /bin/sh, mais dash, Bash n'étant disponible que pour l'utilisateur en session interactive. Bash se retrouve également dans Apple Mac OS X et dans Microsoft Windows via Cygwin (SFU, Services for Unix, utilise csh ou ksh).

Quelques explications

Il s'agit d'exploiter un bash-isme, une spécificité du shell Bash, permettant d'exporter une fonction et non seulement une variable. Les autres shells (ksh, zsh, dash, …) ne sont pas concernés par cette faille. Par ailleurs, Bash ne permet pas cet export de fonctions s'il est utilisé avec l'option -p).

Il est tout à fait normal de vouloir passer des variables d'environnement à un processus enfant.

Mais Bash permet en outre de passer des fonctions vers le processus enfant. Aucun autre shell ne permet cela. Dans ce cadre relativement strict, la sécurité ne pose pas de problème : les droits et contextes d'exécution sont identiques et l'utilisateur, système ou non, est le même. Ceci est documenté, il s'agit de l'option -f de la commande export dans le shell Bash. « It is not a bug, it is a feature », le vieil adage prend ici tout son sens. Nous laissons le lecteur seul juge du bien-fondé de ce bashisme.

Alors s'il n'y a pas de problème, où est le problème ? Le problème se situe dans l'usage de Bash par les autres programmes. Bash est devenu le shell par défaut de certaines distributions, et de nombreux programmes utilisent le shell par défaut pour passer des variables d'environnement entre leurs processus. Le contexte change donc : ce n'est plus un utilisateur local et de confiance qui utilise cela, mais une multitude de programmes, parfois distants.

Ces programmes ne valident pas eux mêmes les données qu'ils donnent à Bash, et ne font souvent que passe-plat. Dans ce contexte, ce qui était auparavant une fonctionnalité se transforme alors en faille. Ceci explique l'ancienneté du problème.

Explications techniques

Une fonction dans le shell bash

#!/bin/bash
déclaration de la fonction d'affichage du message "bonjour vous", nommée mafonction :
mafonction() {
echo "bonjour vous";
}
exécution de la fonction :
mafonction

La même chose, pour passer la fonction à un sous-shell

env mafonction='() { echo "bonjour vous"; }' bash -c 'mafonction;'

On prefixe avec la commande env pour faire tourner un programme dans un environnement modifié. Et à la fin on fait exécuter la fonction par un autre bash. OK ?

La même chose, en détournant l'usage

env mafonction='() { echo "bonjour vous"; }; echo "voici shellshock"' bash -c "mafonction;"

Ici, l'exécution de la fonction mafonction ne se limite pas à un écho "bonjour vous", mais exécute aussi le code echo "voici shellshock" On notera la place du délimiteur '

OK ?

Et en fait il n'est même pas nécessaire d'exécuter la fonction définie :

env mafonction='() { echo "bonjour vous"; }; echo "voici shellshock"' bash -c "true"
voici shellshock

Donc, le simple () { :;} suffit à résumer la situation.

OK !

Surfaces d'attaques et exploitabilité

Les conditions de l'exploitation à distance de la faille sont relativement simples :

	
/bin/sh pointe sur /bin/bash ;

	avoir SELinux désactivé ou non configuré ;

	avoir un service qui écoute le réseau et qui va exécuter bash.

L'exploitation de cette faille est très simple, et de nombreux preuves de concepts et exploits circulent actuellement sur Internet. Voici une liste non-exhaustive des logiciels qui peuvent être utilisés en passe-plat :

	dhclient ;

	apache, via mod_cgi (et sans mod_security correctement configuré) ;

	exim ; postfix ; qmail ; procmail ;

	OpenVPN ;

	stunnel ;

	probablement de très nombreux logiciels privateurs …

	SIP, FTP, probablement d'autres …

Preuves de Concept

Un projet hébergé sur github rassemble une série de POC à cette adresse

À noter que SELinux ne va pas bloquer un usage de « shellshock », il va cependant en réduire fortement les possibilités d'exploitation. Par exemple le contexte httpd_sys_script_t est attribué à tout CGI, contexte qui ne permet l'écriture que dans … /tmp! Le lecteur trouvera des explications complètes sur le blog de Dan Walsh à ce sujet.

Ne sont donc pas concernées : toutes les distributions ayant un autre shell que Bash. Toutes les distributions ayant SELinux activé bénéficient d'une protection contre des exploitations de ce type. Mais également : tous les matériels embarqués et objets connectés, contrairement à ce que des articles de presse affirment, car ces matériels utilisent la plupart du temps busybox et son implémentation inline de Bash n'est pas vulnérable. Ne sont pas concernés non plus les téléphones portables (pas plus les Android que les iPhones). Les "box" internet ne le sont pas davantage, ni les télévisions, ni les lecteurs de salon, les autoradios, ni les avions, drones, missiles, sous-marins… Bref, nous avons eu le plaisir de lire un peu n'importe quoi sur le sujet et la revue de presse contient quelques jolies perles.

NdM : le fabriquant de NAS QNAP vient d'alerter ses utilisateurs (cf article Next INpact)

Chronologie des évènements

	Stéphane Chazelas rapporte le problème à Redhat (bug déclaré le 14 septembre) ;

	Le CVE-2014-6271 lui est attribué ;

	Le 24 septembre, ce CVE est rendu public et un premier correctif est mis à disposition ;

	Le jour même la communauté pointe l'insuffisance de ce correctif ;

	Le CVE-2014-7169 est alors ouvert et attribué à Tavis Ormandy ;

	Le 27 septembre le second correctif est publié

Solutions mises en œuvre

Correctifs disponibles et annonces des distributions

La faille, CVE-2014-6271

	Le test :
env 'x=() { :;}; echo vulnerable' 'BASH_FUNC_x()=() { :;}; echo vulnerable' bash -c "echo test" Ne doit pas retourner le terme "vulnérable", quelque soit le formattage retour.

	
Les annonces :

	Debian

	Ubuntu 1 et 2

	Redhat 1, 2 et 3,

	Mageia

	Suse

	Fedora 1, 2 et 3

	ArchLinux

	Gentoo

	etc…

Le second problème, CVE-2014-7169

	Le test :
cd /tmp; rm -f echo; env 'x=() { (a)=>\' bash -c "echo date"; cat echo doit retourner que le fichier "/tmp/echo" n'existe pas.

	
Les annonces :

	Debian

	Ubuntu

	Redhat 1, 2 et 3

	Mageia

	Suse 1, 2 et 3

	Fedora 1, 2 et 3

	ArchLinux

	Gentoo

	etc..

Les CVE-2014-6277, CVE-2014-7186 et CVE-2014-7187 ne sont pas publics à ce jour (infos chez Redhat 0, 1 et 2).

	D'autres correctifs sont à venir.

mod_security, le filtrage

Mod_security est un pare-feu applicatif pour le serveur Apache. Il peut être configuré pour filtrer certains caractères et expressions régulières. C'est donc un moyen efficace pour se prémunir contre le principal vecteur d'attaque : les scripts CGI. Si vous utilisez Redhat, vous pouvez l'installer ou le mettre à jour : il contient les règles tout prêtes pour filtrer « shellshock ». Ces règles sont de types : SecRule REQUEST_HEADERS "^\(\) {" & request_line.

Le cas FreeBSD

Le projet FreeBSD a décidé de désactiver la possibilité d'importation de fonction de Bash. Le système FreeBSD n'utilise pas Bash comme shell par défaut, mais tcsh, Bash n'étant même pas inclus dans une installation de base. Mais pour prémunir de tout problème lié à un changement de shell par défaut, le projet a décidé de supprimer la fonctionnalité incriminée, avec ce message laconique : « cela retire le risque de nouveaux problèmes conduisant à l’exécution de code, et le risque pour les scripts suid, aussi pour les applications mal écrites qui ne nettoient pas leurs environnements » Radical.

Revue de presse

Après les annonces sécurité et la réaction des projets (Bash, FSF - traduite en français par l'April), la presse spécialisée puis la presse généraliste ont multiplié les articles : pire que la faille Heartbleed ? (Slate.fr, LMI, Silicon.fr, L'Express, 20minutes, HuffingtonPost, New Zealand Herald), « panique » (Courrier International), « mégafaille » (01Net), « horrible » (ZdNet), « premières attaques » (01net), « plus grande menace de l'histoire du web » (ParisMatch, si si), « 500 millions de serveurs web vulnérables » (La Tribune, Washington Post), « Google et Amazon ont patchés » - super on est sauvés alors - (WallStreetJournal), d'autres failles Bash à prévoir (ArsTechnica), « ver fou ShellShock » (Wired ou le blog de R. Graham), « internet bâti sur de la glace fine » (Financial Times), etc.

Conclusion

D'une rencontre entre une fonctionnalité et des usages nait une faille qui fait grand bruit. Bruit généré par l'importance du problème, certes, mais également par le manque de discernement et le FUD autour. Ce qui met en valeur la place qu'ont pris les Logiciels Libres dans nos vies quotidiennes, sans que cela se voie. Il aura fallu moins de 4 jours entre la publication du problème (à ne pas confondre avec le signalement initial aux équipes sécurité) et sa résolution. Peu d'éditeurs peuvent se targuer d'être aussi rapides sur la résolution d'un problème de ce type et sur la transparence pour l'accès à l'information.

Dans le même temps, l'inquiétude de savoir que cette possibilité existe depuis de nombreuses années est légitime. Et elle renforce la nécessité de participation. Combien d'éditeurs de solutions s'appuient sur des briques libres sans jamais rien verser aux projets ?

Mettez et maintenez vos systèmes à jour! Et ne pensez pas qu'un programme qui n'a pas connu beaucoup de failles est forcément très sûr, peut-être que personne ne l'avait vraiment regardé jusque là.

Aller plus loin

	
Redhat : Frequently Asked Questions about the Shellshock Bash flaws
(499 clics)

	
Redhat : Bash specially-crafted environment variables code injection attack
(203 clics)

	
Annonce initiale sur la liste Open Source Security
(155 clics)

	
CERTFR-2014-ALE-006 : Vulnérabilité dans GNU bash
(713 clics)

	
ShellShock.fr : explications et testeur en ligne
(1955 clics)

	
GitHub : Security vulnerability in bash addressed
(241 clics)

	
Shellshock DHCP RCE Proof of Concept
(187 clics)

	
Journal initial sur LinuxFr.org : Mets à jour ton bash. Maintenant.
(461 clics)

	
Free Software Foundation statement on the GNU Bash "shellshock" vulnerability
(116 clics)

	
01Net : Interview exclusive: « J’ai découvert la faille Shellshock par hasard »
(738 clics)

	
shellshocker.net : explications et testeur en ligne
(428 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections46.png

