

Une intelligence artificielle libre est-elle possible ?

Posté par Liorel le 26 février 2025 à 21:47.
Édité par Voltairine, Benoît Sibaud, BAud, Ysabeau 🧶 et ted.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	intelligence_artificielle

	open_source

	osi

	fsf

	licence

	libre

[image: Technologie]

Ces derniers temps, on a beaucoup parlé d’intelligence artificielle sur LinuxFr.org. D’IA propriétaires, et d’IA libres. Mais peut-on vraiment faire une IA libre ? La notion n’est pas sans poser quelques difficultés. Une (pas si) courte discussion du problème.

Sommaire

	On appellera IA un réseau de neurones artificiels

	
Pour comprendre le réseau de neurones, il est nécessaire de disposer de bases statistiques
	
Les statistiques reposent sur la modélisation
	Un exemple : la régression linéaire

	
Le réseau de neurones
	Le neurone naturel

	Le neurone formel

	La mise en réseau

	Le réseau de neurones est Turing-complet

	Le réseau de neurones présente un effet boîte noire important

	
Le réseau de neurones est un modèle statistique
	Tous les modèles sont faux, certains sont utiles, et c’est vrai aussi pour le réseau de neurones

	
Le but du logiciel libre est de rendre le pouvoir à l’utilisateur
	La première des libertés est celle de savoir ce que je fais

	Si je sais ce que je fais, je dois pouvoir modifier ce que je fais

	
Le réseau de neurones est difficilement compatible avec le libre
	Personne ne sait vraiment ce que fait un réseau de neurones

	Disposer de la description complète d’un réseau de neurones ne permet pas de l’améliorer

	La définition du code source d’un réseau de neurones est ambiguë

	
Cette ambiguïté fait courir un risque juridique sous certaines licences libres
	Comment les boîtes qui font de l’IA non libre résolvent-elles ce dilemme ? Elles ne le résolvent pas

	La définition d’une IA open source ressemble furieusement à un constat d’échec

	Conclusion : qu’attendre d’une IA libre ?

On appellera IA un réseau de neurones artificiels

Commençons par définir notre objet d’étude : qu’est-ce qu’une IA ? Par « intelligence artificielle », on pourrait entendre tout dispositif capable de faire réaliser par un ordinateur une opération réputée requérir une tâche cognitive. Dans cette acception, un système expert qui prend des décisions médicales en implémentant les recommandations d’une société savante est une IA. Le pilote automatique d’un avion de ligne est une IA.

Cependant, ce n’est pas la définition la plus couramment employée ces derniers temps. Une IA a battu Lee Sedol au go, mais ça fait des années que des ordinateurs battent les humains aux échecs et personne ne prétend que c’est une IA. Des IA sont employées pour reconnaître des images alors que reconnaître un chien nous semble absolument élémentaire, mais l’algorithme de Youtube qui te suggère des vidéos pouvant te plaire parmi les milliards hébergées fait preuve d’une certaine intelligence et personne ne l’appelle IA. Il semble donc que le terme « IA » s’applique donc à une technique pour effectuer une tâche plus qu’à la tâche en elle-même, ou plutôt à un ensemble de techniques partageant un point commun : le réseau de neurones artificiels.

Dans la suite de cette dépêche, j’utiliserai donc indifféremment les termes d’IA et de réseau de neurones1.

Pour comprendre le réseau de neurones, il est nécessaire de disposer de bases statistiques

Les statistiques (ou la statistique, on peut dire les deux, comme en Alexandrie), c’est la branche des mathématiques qui s’intéresse aux moyens, à partir de données observées et fondamentalement probabilistes, d’en tirer des conclusions généralisables (et idéalement, de prédire l’avenir à partir du passé).

La data science, c’est la branche de l’informatique qui s’intéresse aux moyens, à partir de données emmagasinées sur lesquelles on ne fait pas d’hypothèse de mode de génération, d’en tirer des conclusions généralisables (et idéalement, de prédire les données futures).

Ça vous semble similaire ? Ça l’est. Les deux champs vont avoir des divergences de vocabulaire, de langages (les stateux préfèreront R, les data scientists Python), de formation (les stateux sont plutôt des universitaires, les data scientists plutôt des informaticiens au niveau licence, mais ils ont les mêmes masters et doctorats), mais fondamentalement, et surtout mathématiquement, c’est la même chose. Les connaissances en inférence statistique (notamment bayésienne, pour ceux à qui ça parle) se généralisent très bien à la data science.

Pour faire court, un statisticien est un data scientist qui se la pète, alors qu’un data scientist est un informaticien qui, n’étant pas assez bon pour survivre à la rude concurrence universitaire, a multiplié son salaire par 10 ou 20 en allant vendre ses compétences statistiques à Facebook.

Les statistiques reposent sur la modélisation

En statistique, la manière la plus courante de répondre à une question est de construire un modèle. Prenons une question simple : je dispose d’un jeu de données où j’ai enregistré, pour 1000 personnes, leur IMC et leur taux de cholestérol. Je souhaite savoir s’il y a un lien entre les deux. On souhaiterait, dans ce cas simple, rechercher une relation monotone, sans faire d’hypothèse sur le type de relation.

Un exemple : la régression linéaire

Une manière de répondre à ma question est d’écrire [image: Cholestérol = A\times IMC + B] et de trouver les meilleurs A et B pour que la droite « colle » le mieux possible au nuage de points. On démontre que la meilleure droite est celle qui minimise un certain critère, la somme des carrés des erreurs. Une fois qu’on a la meilleure droite possible, on peut faire plein de choses avec :

	On peut rétro-prédire le taux de cholestérol des personnes déjà observées et voir de combien la prédiction s’écarte du réel, ce qui fournit une erreur moyenne de prédiction ;

	On peut faire de même en prédisant juste le taux de cholestérol moyen pour tous les individus et comparer les erreurs moyennes de prédiction, ce qui permet de voir de combien le modèle améliore la prédiction (et donc de quantifier la quantité d’info apportée par la donnée IMC sur la variable cholestérol) ;

	On peut étudier le signe de A : si A est négatif, prendre du poids fait baisser le cholestérol : si A est positif, prendre du poids augmente le cholestérol : si A est nul, le poids n’apporte pas d’info sur le cholestérol.

	Par contre, on ne peut rien dire de la causalité. Tout ce qu’on a observé, ce sont des personnes qui, au même moment, avaient un IMC et un taux de cholestérol donnés. Impossible de dire s’ils ont ce cholestérol parce qu’ils ont cet IMC, s’ils ont cet IMC parce qu’ils ont ce cholestérol, ou s’ils ont ce cholestérol et cet IMC parce qu’ils ont une troisième exposition.

	On peut enfin faire effectuer de la prédiction à notre modèle : en lui passant une personne dont on ne connaît que l’IMC, on peut estimer son taux de cholestérol et assortir cette prédiction d’un niveau de certitude (ça demande un peu plus de maths, mais c’est l’idée).

On peut vouloir ajouter une troisième variable, mettons le tabagisme. On écrira alors :

Avec la variable tabac codée à 0 (non fumeur) ou 1 (fumeur). Noter que notre modèle est alors passé en dimension 3 : on ne cherche plus à faire passer la meilleure droite par rapport au nuage de points en 2D, mais à faire passer le meilleur plan par rapport au nuage de points en 3D. Noter aussi qu’on peut facilement inclure des variables qualitatives : il suffit de les coder 0 ou 1. On peut d’ailleurs inclure des variables à n modalités : il suffit de les recoder en n-1 sous-variables en 0-1 (la modalité de référence étant celle pour laquelle toutes les sous-variables sont à 0).

Les [image: \beta] sont appelés des paramètres : c’est en les faisant varier qu’on ajuste le modèle aux données.

On peut ainsi ajouter un nombre quelconque de variables… Ou peut-être pas. En effet, on va finir par atteindre un seuil où le meilleur hyperplan est tout simplement celui qui passe par tous les points ! Si j’ai 50 individus et 50 paramètres, il est facile de choisir un plan qui passe par tous les individus. C’est ce qu’on appelle le surapprentissage : le modèle a tout simplement appris le jeu de données par cœur ! Le surapprentissage est un écueil des modèles trop complexes et un réseau de neurones est tout à fait capable de surapprendre.

Le réseau de neurones

Le neurone naturel

Les neurones sont les cellules du système nerveux. Elles sont spécialisées dans la transmission d’information.

[image: Neurone naturel]

Comme tu peux le voir sur cette image issue de Wikimedia (source), un neurone comprend un nombre quelconque de dendrites, un corps cellulaire, et un axone. Point crucial : l’axone est unique. Il peut lui-même transmettre de l’information à différents neurones en aval, mais il transmet la même information. Or l’information, dans un neurone, peut entrer par les dendrites et par le corps cellulaire, mais elle ne peut ressortir que par l’axone (on peut faire abstraction de la gaine de myéline et des nœuds de Ranvier, qui ont un rôle central dans la vitesse de conduction de l’information mais qui ne changent rien aux calculs effectués). Autrement dit, un neurone transmet la même information à tous les neurones d’aval, et si ceux-ci en font un usage différent, c’est uniquement lié à leurs propres calculs en interne.

Le neurone formel

On peut modéliser un neurone, par analogie avec le neurone naturel. Notre neurone formel pourra donc prendre un nombre quelconque d’entrées, mais comme un neurone naturel, il ne produira qu’une seule sortie. Notre neurone est donc une fonction de ses entrées :

En pratique (mais ça n’a rien d’obligatoire), on prend souvent une fonction d’une combinaison linéaire des entrées :

Avec une contrainte : la fonction [image: f] (qu’on appelle fonction d’activation) doit être monotone (idéalement strictement monotone), dérivable presque partout (c’est nécessaire à l’optimisation du réseau, qu’on verra plus tard), définie sur un intervalle suffisamment large pour qu’on soit toujours dedans, et non linéaire (sinon mettre les neurones en réseau n’a aucun intérêt, autant faire directement une unique régression linéaire).

En pratique, on prend donc quelques fonctions classiques :

	La fonction binaire : [image: f(x) = 0] si [image: x < 0], [image: 1] sinon

	La fonction logistique, une amélioration de la fonction binaire : [image: f(x) = \frac{1}{1 + e^{-x}}]. Avantage : elle est strictement monotone, dérivable partout, et elle prend quand même ses valeurs entre 0 et 1.

	La fonction Rectified Linear Unit (ReLU, qu’on peut prononcer « relou ») : [image: f(x) = 0] si [image: x<0], [image: x] sinon. Avantage : elle est très facile (donc rapide) à calculer et à dériver. On peut la rendre strictement monotone en la modifiant à la marge : [image: f(x) = \epsilon\times x] si [image: x<0], [image: x] sinon, avec [image: 0<\epsilon << 1].

La mise en réseau

Tout l’intérêt du neurone formel réside dans sa mise en réseau. Un unique neurone ne fait pas mieux qu’une régression linéaire. On construit donc un réseau de neurones. Pour ce faire, on va donc générer plusieurs neurones, chacun prenant en entrée la sortie de plusieurs neurones et produisant une sortie unique, qui sera à son tour utilisée en entrée par d’autres neurones. On ajoute un ensemble de neurones qu’on pourrait qualifier de « sensitifs », au sens où ils prennent en entrée non pas la sortie d’un neurone antérieur, mais directement l’input de l’utilisateur, ou plutôt une partie de l’input : un pixel, un mot… Enfin, une sortie est ajoutée : elle produit le résultat final.

Étant donné que les neurones sont virtuels et n’ont pas d’emplacement géographique, il est assez logique de les représenter en couches : la couche 0 est constituée des neurones sensitifs, la couche 1 prend en entrée les résultats de la couche 0, et ainsi de suite. Classiquement, tous les neurones de la couche n+1 prennent en entrée les sorties de tous les neurones de la couche n.

Se pose alors la question : combien de neurones par couche, et combien de couches au total ?

On peut considérer deux types de topologies : soit il y a plus de neurones par couche que de couches : le réseau est plus large que long, on parlera de réseau large. Soit il y a plus de couches que de neurones par couche, auquel cas le réseau est plus long que large, mais on ne va pas parler de réseau long parce que ça pourrait se comprendre « réseau lent ». On parlera de réseau profond. C’est de là que viennent les Deep et les Large qu’on voit un peu partout dans le marketing des IA. Un Large Language Model, c’est un modèle, au sens statistique, de langage large, autrement dit un réseau de neurones avec plus de neurones par couche que de couches, entraîné à traiter du langage naturel. On constate empiriquement que certaines topologies de réseau sont plus efficaces pour certaines tâches. Par exemple, à nombre de neurones constant, un modèle large fera mieux pour du langage. À l’inverse, un modèle profond fera mieux pour de la reconnaissance d’images.

Le réseau de neurones est Turing-complet

Un résultat théorique important est que les réseaux de neurones sont Turing-complets. C’est-à-dire que, pour tout programme que l’on peut coder et qui sorte une réponse algorithmique, il existe un réseau de neurones qui donne le même résultat. La réciproque est vraie aussi : ce qui est faisable avec un réseau de neurones est faisable en C ou dans un autre langage, au pire en recodant le réseau dans ce langage.

Le réseau de neurones présente un effet boîte noire important

Prenons maintenant un élément d’information et essayons de suivre son trajet dans le modèle jusqu’à la sortie. Dans une régression linéaire, c’est assez facile : le poids de l’IMC va peser pour [image: \beta_{IMC}] dans le résultat final. Dans une forêt aléatoire, on peut toujours isoler les arbres où apparaît une donnée et essayer de regarder combien elle pèse. C’est fastidieux mais ça reste faisable. Dans un réseau de neurones, c’est impossible. Chaque neurone de la couche 1 va passer un résultat agrégé à la couche 2, où chaque donnée de la couche 0 ne compte plus que comme partie d’un tout. De même, chaque neurone de la couche 2 va agréger tous les résultats de la couche 1. Il devient impossible d’individualiser l’effet d’une donnée ou même celui d’un neurone.

Ainsi, même si je connais l’intégralité du contenu du modèle, il m’est impossible de donner du sens à une partie du modèle, prise isolément. Le modèle se comporte comme un bloc monolithique, et la seule manière d’étudier un nouvel exemple est de lui appliquer tout le modèle et de voir ce qui sort. C’est ce qu’on nomme l’effet boîte noire.

Attention : l’effet boîte noire n’est pas lié au nombre de paramètres du modèle. Si je fais de la génétique, et que j’étudie 2000 mutations génétiques individuelles (des SNP, pour single nucleotide polymorphism), je peux assez facilement ajuster un modèle de régression logistique (qui est une variante de la régression linéaire où on fait prédire non pas une variable quantitative, mais une probabilité) à 2000 paramètres (un [image: \beta] pour chaque SNP). Chaque paramètre sera parfaitement compréhensible et il n’y aura pas d’effet boîte noire.

Il n’est pas non plus lié à ta méconnaissance des mathématiques, cher lectorat. Des statisticiens chevronnés se cassent les dents sur l’effet boîte noire. Il est intégralement lié à la structure du modèle. Certains types de modèles en ont, d’autres n’en ont pas. Les réseaux de neurones en ont.

Cet effet a une conséquence perturbante : même si on sait ce que fait un réseau de neurones, il est impossible de savoir comment il le fait ! On pourrait argumenter que ce n’est pas forcément différent de ce que nous faisons : si on montre à un enfant de 3 ans une photo de chien, il saura dire que c’est un chien, mais il ne saura pas dire pourquoi c’est un chien. Cependant, on demande rarement à un programme d’être réflexif, mais on demande toujours à son auteur de savoir comment il tourne. C’est un peu la base de la programmation.

Le réseau de neurones est un modèle statistique

Reprenons : on a un paradigme (le réseau de neurones) capable d’effectuer n’importe quelle tâche pour laquelle il existe une solution algorithmique, à condition de le programmer correctement… Mais on ne sait pas le programmer ! Heureusement, il existe un contournement : on ne va pas le programmer, on va l’ajuster, comme un modèle statistique. Ou l’entraîner, si on préfère le terme de « machine learning ».

Tu t’en souviens, cher lecteur, un réseau de neurones est un ensemble de fonctions dont chacune prend en entrée différentes données avec des coefficients (les fameux [image: \beta_i]). On va commencer par initialiser l’apprentissage en donnant des valeurs aléatoires à ces coefficients. Ensuite, on va soumettre à notre réseau de neurones des tas et des tas de données correctes, et qu’on va comparer ce qu’il prédit à ce qu’on attend. La différence s’appelle l’erreur. Et à chaque itération, on va identifier les neurones les plus générateurs d’erreur et les pénaliser (réduire leur poids, ou plutôt réduire leur poids dans les neurones où c’est nécessaire), tout en favorisant les meilleurs neurones. Les détails de la technique (qui s’appelle la rétropropagation de l’erreur) dépassent largement le cadre de cette courte introduction, mais l’essentiel est qu’à la fin, on obtient un réseau capable de donner des réponses proches de ce qui existait dans l’ensemble des données correctes qu’on lui a passé et de généraliser quand la demande est différente d’une donnée de l’ensemble d’apprentissage. Avantage : en pratique, un réseau de neurones est capable de prendre en entrée n’importe quel type de structure de données : image, texte, son… Tant que les neurones d’entrée sont adaptés et qu’il existe un ensemble d’apprentissage suffisamment grand, c’est bon.

Tous les modèles sont faux, certains sont utiles, et c’est vrai aussi pour le réseau de neurones

Bien sûr, il y a des limites. La première est la complexité algorithmique. Un réseau de neurones nécessite de réaliser un nombre astronomique d’opérations simples : pour chaque couche, il faut, pour chaque neurone, calculer la somme des produits des coefficients avec toutes les sorties de la couche antérieure, soit [image: c\times n^2] multiplications, où n est le nombre de neurones par couche et c le nombre de couches. Par exemple, pour un petit réseau de 10 couches de 20 neurones, plus une couche d’entrée, on réaliserait à chaque itération [image: 10\times 20^2 = 4000] multiplications en virgule flottante, et encore, c’est ici un tout petit réseau : un réseau comme ChatGPT a des neurones qui se comptent par millions, voire dizaines de millions !

Une autre limite est la précision des réponses. Le réseau de neurones étant un modèle statistique, il n’est capable que d’interpoler, c’est-à-dire trouver une réponse à partir de cas similaires. Cette interpolation est rarement aussi précise que celle que donnerait une réponse formelle si elle existait : si Newton avait eu accès à des réseaux de neurones, nous aurions une prédiction du mouvement des planètes qui ne baserait sur aucune théorie, qui serait à peu près exacte mais insuffisamment précise pour envoyer des sondes sur Mars. Quant à s’interroger sur la précession du périhélie de Mercure, on oublie.

De manière générale, on peut s’interroger sur ce qui amène un réseau de neurones à se planter. On peut diviser les erreurs en plusieurs catégories :

	La question posée n’a aucun rapport avec les données passées en entrée. Par exemple : « Sachant que la dernière personne que j’ai croisée dans la rue avait 42 ans, indique-moi son genre ». Le modèle n’a pas assez d’information pour répondre.

	La question posée n’a aucun rapport avec l’ensemble d’apprentissage. Par exemple, demander à un modèle entraîné à reconnaître des photos de chien de reconnaître une voiture. En général, ce problème est résolu en contraignant le format des questions ; dans cet exemple, il suffirait de ne pas permettre à l’utilisateur de poser une question, juste de poster une photo et de recevoir une réponse. D’ailleurs, on ne voit pas très bien pourquoi entraîner un tel modèle à traiter du langage.

	L’ensemble d’apprentissage est trop restreint/biaisé. L’exemple typique est le modèle qui prétendait reconnaître les délinquants à une simple photo et identifiait en fait tous les noirs : ben oui, ils étaient majoritaires dans les délinquants de l’ensemble d’apprentissage. Noter qu’il existe des problèmes où l’ensemble d’apprentissage sera toujours trop restreint pour un certain niveau de précision exigé. Si on demande à un réseau de dire si un point donné est à l’intérieur ou à l’extérieur d’un flocon de Koch, il va falloir lui passer une infinité de données d’apprentissage pour qu’il apprenne les cas limites juste par interpolation (alors qu’avec un modèle formel, ça serait assez facile).

	Le modèle est parasité par une donnée annexe : c’est une problématique assez spécifique du réseau de neurones. L’exemple le plus classique est celui des images de mains : après tout, le voisin le plus probable d’un doigt, c’est un autre doigt. L’amusant, c’est que ce problème serait résolu assez facilement en demandant au modèle de compter 4 doigts et un pouce. Mais comme on ne peut pas programmer directement un réseau de neurones…

	Enfin, si les motifs précédents ont été écartés, je dois me demander si mon modèle n’est pas inadapté : soit qu’il n’a pas assez de neurones, soit que la topologie n’est pas bonne. Plus de neurones permettent de traiter des données plus complexes et leur disposition permet d’augmenter leur efficacité.

En définitive, on peut voir le réseau de neurones comme un outil qui résout approximativement un problème mal posé. S’il existe une solution formelle, et qu’on sait la coder en un temps acceptable, il faut le faire. Sinon, le réseau de neurones fera un taf acceptable.

Le but du logiciel libre est de rendre le pouvoir à l’utilisateur

On a beaucoup glosé, et on continuera de le faire longtemps, sur la philosophie du Libre. Free Software Foundation d’un côté, Open Source Initiative de l’autre, les sujets de discorde ne manquent pas. Mais il faut au moins créditer l’OSI sur un point : avoir clarifié le fait que le Libre est avant tout un mouvement politique, au sens noble du terme : il vise à peser sur la vie de la cité, alors que l’Open Source vise avant tout à disposer de logiciels de qualité.

La première des libertés est celle de savoir ce que je fais

Ça paraît évident dans la vie de tous les jours : je sais ce que je fais. Si je décide de prendre une pelle et de planter un arbre dans mon jardin, je sais que je suis en train de prendre une pelle et de planter un arbre dans mon jardin. Si je décide de prendre un couteau et de le planter dans le thorax de mon voisin, je sais ce que je fais. C’est une liberté fondamentale, au sens où elle fonde toutes les autres. Si je ne sais pas ce que je fais, je ne peux signer un contrat, par exemple (c’est d’ailleurs le principe qui sous-tend le régime de la tutelle en droit). D’ailleurs, comme toute liberté, elle fonde une responsabilité. Si je ne savais pas ce que je faisais (et que je peux le prouver), je peux plaider l’abolition du discernement et échapper à ma responsabilité pénale, quelle que soit l’infraction commise, même les plus graves2

Dans la vie de tous les jours, donc, il est évident que je sais ce que je fais. Mais avec un ordinateur, c’est beaucoup moins évident. Quand j’exécute Windows, je ne sais pas ce que je fais. Pas seulement parce que je ne connais pas la séquence de boot, mais de façon beaucoup plus fondamentale : parce que n’ayant pas accès au code source, je ne sais pas ce que fait le programme que j’exécute. Ce qui pose un problème majeur de confiance dans le logiciel exécuté :

	Confiance dans le fait que le programme fait bien ce que son programmeur a voulu qu’il fasse (absence de bugs)

	Confiance dans le fait que le programmeur avait bien mon intérêt en tête et pas seulement le sien (sincérité du programmeur, fréquemment prise en défaut dans le logiciel non libre)

Dans le système des 4 libertés du logiciel libre, cette liberté est la liberté 1. Elle passe après la liberté 0 (liberté d’exécuter le programme) et avant la liberté 2 (liberté de redistribuer le programme). On pourrait légitimement discuter de sa priorité par rapport à la liberté 0 (est-il raisonnable d’exécuter un programme dont on ne sait pas ce qu’il fait ?) mais ça dépasserait l’objet de cette dépêche.

Si je sais ce que je fais, je dois pouvoir modifier ce que je fais

Conséquence logique de la liberté précédente : si je n’aime pas ce que fait un programme, je dois pouvoir l’améliorer. Si je ne sais pas le faire moi-même, je dois pouvoir payer quelqu’un pour l’améliorer. Là encore, ça suppose l’accès au code source, ne serait-ce que pour savoir ce que fait le programme. Il s’agit de la liberté 3 du logiciel libre.

Le réseau de neurones est difficilement compatible avec le libre

Personne ne sait vraiment ce que fait un réseau de neurones

On l’a vu, les réseaux de neurones présentent un effet boîte noire important. Déjà, la plupart des IA commerciales ne sont accessibles qu’au travers d’une interface ou une API. Elles n’exposent que rarement les neurones. Mais même pour une personne disposant de tous les neurones, autrement dit de la description complète du réseau, l’effet boîte noire est tel que le fonctionnement du réseau de neurones est inintelligible. D’ailleurs, s’il était intelligible, il serait très vite simplifié !

En effet, on peut recoder tout réseau de neurones dans un langage plus rapide, dès lors qu’on comprend ce qu’il fait (puisqu’il est Turing-complet). Vu la consommation astronomique d’énergie des réseaux de neurones, s’il existait un moyen de comprendre ce que fait un réseau de neurones et de le traduire dans un autre langage, on le ferait très vite. Ce qui fournirait d’ailleurs des réponses à des questions théoriques ouvertes comme : qu’est-ce que comprendre une phrase ? Comment reconnaît-on un chien, un visage, un avion ?

Disposer de la description complète d’un réseau de neurones ne permet pas de l’améliorer

On l’a vu : si je dispose de la totalité des neurones, je dispose de la totalité de la description du réseau de neurones. Mais comme je suis incapable de savoir ce qu’il fait, je ne suis pas plus avancé pour l’améliorer, qu’il s’agisse de retirer un défaut ou d’ajouter une fonctionnalité. Noter d’ailleurs que ceci n’est pas forcément impactant de la même manière pour tous les aspects du réseau de neurones : si je n’ai aucun moyen d’être sûr de l’absence de bugs (c’est même le contraire ! Il y a forcément des bugs, c’est juste que je ne les ai pas trouvés ou qu’ils ne sont pas corrigeables), j’ai en revanche peu d’inquiétude à avoir concernant la sincérité du programmeur : comme lui non plus ne maîtrise pas sa bestiole, pas de risque qu’il soit insincère3.

La définition du code source d’un réseau de neurones est ambiguë

Posons-nous un instant la question : qu’est-ce que le code source d’un réseau de neurones ? Est-ce la liste des neurones ? Comme on l’a vu, ils ne permettent ni de comprendre ce que fait le réseau, ni de le modifier. Ce sont donc de mauvais candidats. La GPL fournit une définition : le code source est la forme de l’œuvre privilégiée pour effectuer des modifications. Dans cette acception, le code source d’un réseau de neurones serait l’algorithme d’entraînement, le réseau de neurones de départ et le corpus sur lequel le réseau a été entraîné.

Cette ambiguïté fait courir un risque juridique sous certaines licences libres

Tu devines alors, cher lecteur, là où je veux en venir… Si le corpus comprend des œuvres non libres, tu n’as tout simplement pas le droit de le diffuser sous une licence libre ! Et si tu t’es limité à des œuvres libres pour entraîner ton modèle, tu risques fort d’avoir un ensemble d’apprentissage trop restreint, donc un réseau de neurones sans intérêt.

Alors il y a quatre moyens de tricher.

Le premier, c’est de t’asseoir sur la GPL et de considérer qu’en distribuant les neurones, tu as fait le taf. La ficelle est grossière. Je viens de passer une dépêche à te démontrer que c’est faux, tu pourrais au moins me montrer un peu plus de respect.

Le deuxième, c’est de distribuer sous une licence non copyleft, genre BSD ou WTFPL. Une licence qui ne nécessite pas de distribuer le code source. Certes, mais en fait tu ne fais pas du Libre.

Le troisième, c’est de considérer le réseau de neurones comme une donnée, pas un exécutable. Donc pas de code source. La partie sous GPL serait alors l’interface graphique, et le réseau, une donnée. C’est assez limite. Une donnée exécutable, ça s’approche dangereusement d’un blob binaire.

Le quatrième, c’est de repenser complètement le paradigme du logiciel libre et de considérer qu’il vise avant tout à rééquilibrer les rapports de pouvoir entre programmeur et utilisateur, et qu’en redistribuant les neurones, tu as fait le job. Sur les rapports de pouvoir, tu n’as pas tort ! Mais d’une part, ça ne tiendra pas la route devant un tribunal. D’autre part, il persiste une asymétrie de pouvoir : tu as accès au corpus, pas l’utilisateur.

Quand bien même on admettrait que le code source est l’ensemble corpus + algorithme d’optimisation + réseau de neurones de départ, l’optimisation d’un réseau de neurones consomme autrement plus de ressources que la compilation d’un programme plus classique, des ressources qui sont loin d’être à la portée du quidam classique. À quoi servirait un code source impossible à compiler ?

Enfin, même cette définition du code source pose problème : elle n’est en fait pas beaucoup plus lisible que le réseau lui-même. Ce n’est pas parce que j’ai accès aux centaines (de milliers) de textes sur lesquels un réseau a été entraîné que je peux prédire comment il va se comporter face à une nouvelle question.

Comment les boîtes qui font de l’IA non libre résolvent-elles ce dilemme ? Elles ne le résolvent pas

C’est presque enfoncer une porte ouverte que dire que l’IA pose de nombreuses questions de droit d’auteur, y compris dans le petit microcosme du non-libre. Cependant, les IA non-libres ont un avantage sur ce point : si le réseau de neurones ne permet pas de remonter au corpus initial (donc en l’absence de surapprentissage), alors elles peuvent tranquillement nier avoir plagié une œuvre donnée. Tu ne me verras pas défendre les pauvres auteurs spoliés, car j’ai toujours considéré que la nature même de l’information est de circuler sans barrières (Information wants to be free, tout ça) et que le droit d’auteur en est une, et particulièrement perverse.

La définition d’une IA open source ressemble furieusement à un constat d’échec

L’OSI a publié une définition d’IA open source. Cette définition mérite qu’on s’y attarde.

Premier point intéressant : après des années à tenter de se démarquer du Libre, notamment via la définition de l’Open Source qui tente de reformuler les 4 libertés sans recopier les 4 libertérs, l’OSI baisse les bras : est open source une IA qui respecte les 4 libertés.

Deuxième point intéressant : est open source une IA qui publie la liste des neurones, le corpus d’entraînement et la méthode d’entraînement. En fait, ça revient à ne pas choisir entre les neurones et leur méthode d’entraînement. Soit, mais ça ne résout pas le problème de l’effet boîte noire. Au mieux, ça revient à admettre qu’il est le même pour le programmeur et l’utilisateur.

Conclusion : qu’attendre d’une IA libre ?

Il ne fait aucun doute que développer des IA libres exigera de nouvelles licences. La GPL, on l’a vu, expose à un risque juridique du fait de l’ambiguïté de la définition du code source.

Il est à noter, d’ailleurs, qu’une IA repose rarement exclusivement sur son réseau de neurones : il y a systématiquement au moins un logiciel classique pour recueillir les inputs de l’utilisateur et les passer au réseau de neurones, et un second en sortie pour présenter les outputs. Ces briques logicielles, elles, peuvent tout à fait suivre le paradigme classique du logiciel libre.

En définitive, cher lecteur qui ne développes pas d’IA, je t’invite surtout à te demander : qu’attends-tu d’une IA ? Qu’entends-tu quand on te parle d’IA libre ? Plus fondamentalement, l’IA serait-elle un des rares domaines où il existe une distinction pratique entre libre et Open Source ?

Il n’y a pas de façon simple de faire une IA libre, il n’y a peut-être pas de façon du tout. Mais le principe du libre, c’est que c’est à l’utilisateur in fine de prendre ses décisions, et les responsabilités qui vont avec. Je n’espère pas t’avoir fait changer d’avis : j’espère modestement t’avoir fourni quelques clés pour enrichir ta réflexion sur le sens à donner au vocable IA open source qu’on voit fleurir ici et là.

	
Et je mettrai « artificiel » à la poubelle parce que Implicit is better than explicit, rien que pour embêter Guido). ↩

	
Bon, certaines infractions complexes à exécuter, comme le trafic de drogue ou le génocide, requièrent une certaine implication intellectuelle et sont donc peu compatibles avec l’altération du discernement, mais c’est lié au fait que l’infraction elle-même requiert un certain discernement. ↩

	
Du moins au niveau du réseau de neurones lui-même. Les entrées et les sorties peuvent tout à fait passer par une moulinette insincère et codée dans un langage tout à fait classique. ↩

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/b5c2169b6827593899579a70a3875906b8477166922702ee3a7b4529.png
Dendrites

Corps cellulaire

Noeud de Ranvier

Cellules de Schwann

Gaine de myéline

Axone

Terminaisons de I'axone

EPUB/imagessections50.png

