

Utiliser une des LED d’un Raspberry Pi comme témoin d’enregistrement TV


Posté par ToasteR (site web personnel) le 20 mai 2020 à 13:55.
Édité par Davy Defaud, tisaac, bubar🦥, Ysabeau  🧶 et Benoît Sibaud.
Modéré par Davy Defaud.
Licence CC By‑SA.

Étiquettes :

	tvheadend

	dvb-t

	led

	bash

	systemd

	raspberry_pi

	télévision











[image: Audiovisuel]



Utilisant un Raspberry Pi comme enregistreur TV-TNT via un adaptateur DVB‑T et Tvheadend, il m’est déjà arrivé de flinguer un enregistrement (en fait introduire un saut temporel dans l’enregistrement) :



	parce que lors d’une manipulation ou d’un test, j’avais besoin de redémarrer le Pi et que j’ai quelque peu oublié l’enregistrement en cours ;

	parce qu’en trifouillant des branchements derrière la TV, j’ai eu besoin d’éteindre le Pi et que je l’ai débranché de nouveau en oubliant l’enregistrement en cours.




Même si cela n’arrive pas si souvent, j’ai songé à une solution de reconversion des DEL/LED afin d’éviter cela. Je vous explique dans cette dépêche comment je m’y suis pris.


Sommaire


	La solution envisagée

	Voir l’état des LED

	
Éteindre et allumer les LED
	Extinction via trigger none

	Allumage permanent via trigger default-on

	Faire clignoter une LED





	Sauvegarder l’état des LED

	Restaurer l’état des LED

	Autoriser un utilisateur standard à modifier l’état des LED

	Créer un script « recording »

	Tester

	Appeler le script en début et fin d’enregistrement

	Tests

	Dépannage

	Références



La solution envisagée


Pour prévenir les redémarrages à distance, on peut imaginer une modification de /etc/motd* ou /etc/issue qui prévienne : « ATTENTION, enregistrement en cours ! » Mais pour les débranchements de câbles, on va utiliser les LED afin de prévenir les personnes aux alentours qu’un enregistrement est en cours.


Par défaut, la LED rouge est allumée (témoin power/PWR), la LED verte, elle, s’allume lorsquNil y a de l’activité sur la carte SD (lecture ou écriture). Il est possible de les éteindre ou de les utiliser pour tout autre chose. C’est ce qu’on va faire ici avec les moyens du bord : utiliser une des LED comme témoin d’enregistrement en cours. Pour ma part, en temps normal, je les désactive au démarrage.

Voir l’état des LED


L’état des LED est dans ces répertoires virtuels (kernel filesystem) :



	
/sys/class/leds/led0/ : verte ;

	
/sys/class/leds/led1/ : rouge.




Ces répertoires contiennent, entre autres, ces deux fichiers :



	
brightness : intensité de la LED (0 pour éteinte, toute autre valeur jusque 255 pour allumée) ;

	
trigger : déclencheur, quand et pourquoi la LED s’allume.




# cat /sys/class/leds/led0/brightness
0

# cat /sys/class/leds/led0/trigger
none rc-feedback kbd-scrolllock kbd-numlock kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock timer oneshot heartbeat backlight gpio cpu cpu0 cpu1 cpu2 cpu3 default-on input panic mmc1 [mmc0] rfkill-any rfkill-none rfkill0

# cat /sys/class/leds/led1/brightness
255

# cat /sys/class/leds/led1/trigger
none rc-feedback kbd-scrolllock kbd-numlock kbd-capslock kbd-kanalock kbd-shiftlock kbd-altgrlock kbd-ctrllock kbd-altlock kbd-shiftllock kbd-shiftrlock kbd-ctrlllock kbd-ctrlrlock timer oneshot heartbeat backlight gpio cpu cpu0 cpu1 cpu2 cpu3 default-on [input] panic mmc1 mmc0 rfkill-any rfkill-none rfkill0



Les triggers sont entre crochets [mmc0] pour led0 (verte) et [input] pour led1 (rouge). On a donc, la LED verte (led0) qui s’allume en cas d’activité sur la carte SD (mmc0) et la LED rouge allumée lorsqu’il y a de l’alimentation électrique (input).

Éteindre et allumer les LED


Ces fichiers virtuels sont lisibles par tous et modifiables par root uniquement :


-rw-r--r-- 1 root root 4096 avril 24 10:54 /sys/class/leds/led0/brightness
-rw-r--r-- 1 root root 4096 avril 24 15:55 /sys/class/leds/led0/trigger
-rw-r--r-- 1 root root 4096 avril 24 10:54 /sys/class/leds/led1/brightness
-rw-r--r-- 1 root root 4096 avril 24 16:03 /sys/class/leds/led1/trigger



Les commandes suivantes devront donc être exécutées en tant que root.

Extinction via trigger none



Éteindre la LED verte (led0) :

echo none > /sys/class/leds/led0/trigger


Éteindre la LED rouge (led1) :

echo none > /sys/class/leds/led1/trigger


Pourquoi je touche aux fichiers trigger et pas aux fichiers brightness ? Car si le trigger reste mmc0 pour la LED verte, placer un 0 dans /sys/class/leds/led0/brightness va juste éteindre la LED si elle était allumée à cet instant précis, puis la prochaine activité sur mmc0 va la faire clignoter encore.

Allumage permanent via trigger default-on



Allumer la LED verte (led0) :

echo default-on > /sys/class/leds/led0/trigger


Le contenu du fichier brightness correspondant passe à 255 :


# cat /sys/class/leds/led0/brightness
255



Note : placer toute autre valeur que 0 dans brightness allume la LED, mais il n’est pas possible de modifier son intensité.

Faire clignoter une LED


Maintenant qu’on maîtrise l’allumage et l’extinction, faisons clignoter la LED verte.

Un clignotement, c’est :



	j’allume la LED verte (j’écris default-on dans le trigger) ;

	j’attends une seconde ;

	j’éteins la LED verte (j’écris none dans le trigger) ;

	j’attends une seconde.




Et je recommence tout ça à l’infini.


On peut le faire via le shell, toujours en tant que root :


while true
do
    echo default-on > /sys/class/leds/led0/trigger
    sleep 1
    echo none > /sys/class/leds/led0/trigger
    sleep 1
done


Ctrl + C pour arrêter le script.


On peut même imaginer d’autres séquences invoquant les deux LED pour faire un chenillard rapide :


while true
do
    echo default-on > /sys/class/leds/led0/trigger
    sleep 0.1
    echo default-on > /sys/class/leds/led1/trigger
    sleep 0.1
    echo none > /sys/class/leds/led0/trigger
    sleep 0.1
    echo none > /sys/class/leds/led1/trigger
    sleep 0.1
done


Ou allumer les LED alternativement à cinq secondes d’intervalle :


while true
do
    echo default-on > /sys/class/leds/led0/trigger
    sleep 5
    echo default-on > /sys/class/leds/led1/trigger
    echo none > /sys/class/leds/led0/trigger
    sleep 5
    echo none > /sys/class/leds/led1/trigger
done


Note — La ou les LED restent dans l’état où elles sont lorsque l’on interrompt le script. Il va nous falloir sauvegarder leur état initial au début du script pour pouvoir restaurer cet état à la fin du script.

Sauvegarder l’état des LED


Afin de nettoyer après notre passage, il sera nécessaire de sauvegarder l’état des LED avant d’y toucher pour les restaurer à la sortie de notre script final.


On peut le faire comme ça : pour chaque LED (0 et 1), lire l’état actuel des fichiers virtuels trigger et brightness, stocker ces états dans un emplacement temporaire.

Restaurer l’état des LED


Pour chaque LED (0 et 1), écrire les triggers avec les infos temporaires précédemment enregistrées.

Autoriser un utilisateur standard à modifier l’état des LED


Jusqu’ici, nos expérimentations étaient exécutées en tant que root pour pouvoir modifier les fichiers /sys directement. Par la suite, nous allons vouloir lancer ce script en tant que l’utilisateur qui effectue les enregistrements ; avec Tvheadend, c’est l’utilisateur hts:hts. Quelles sont les possibilités pour arriver à faire ça en tant qu’utilisateur, leurs inconvénients s’il y en a :



	lancer le script avec sudo ;

	changer les permissions des fichiers brightness et trigger au démarrage avec un script appelé via systemd.




J’avais commencé avec la méthode sudo, même si notre script est au final inoffensif, psychologiquement, la méthode ne m’emballait pas. J’ai préféré par la suite modifier les permissions des fichiers virtuels afin que les membres du groupe hts (donc l’utilisateur hts de Tvheadend) puissent les modifier.


Pour chaque fichier (brightness et trigger), changer le propriétaire vers le groupe hts et autoriser le groupe à modifier les fichiers. En shell, ça donne un script ledpermissions à placer dans /usr/local/sbin (car il sera exécuté par root) :


#!/bin/bash
chown :hts /sys/class/leds/led*/{brightness,trigger}
chmod g+w /sys/class/leds/led*/{brightness,trigger}


On le rend exécutable :

chmod +x /usr/local/sbin/ledpermissions


Accompagné par une fichier Unit ledpermissions.service pour systemd qui appellera ce script au démarrage du système :


[Unit]
Description=Set leds permissions

[Service]
Type=oneshot
User=root
ExecStart=/usr/local/sbin/ledpermissions

[Install]
WantedBy=multi-user.target


On vérifie son fonctionnement en affichant les permissions des fichiers avant et après lancement :


$ ls -l /sys/class/leds/led*/{brightness,trigger}`
-rw-r--r-- 1 root root 4096 avril 23 17:40 /sys/class/leds/led0/brightness
-rw-r--r-- 1 root root 4096 avril 23 17:40 /sys/class/leds/led0/trigger
-rw-r--r-- 1 root root 4096 avril 23 17:40 /sys/class/leds/led1/brightness
-rw-r--r-- 1 root root 4096 avril 23 17:40 /sys/class/leds/led1/trigger



Groupe : root, permissions du groupe : r--.


# systemctl start ledpermissions.service
# ls -l /sys/class/leds/led*/{brightness,trigger}
-rw-rw-r-- 1 root hts 4096 avril 23 17:40 /sys/class/leds/led0/brightness
-rw-rw-r-- 1 root hts 4096 avril 23 17:40 /sys/class/leds/led0/trigger
-rw-rw-r-- 1 root hts 4096 avril 23 17:40 /sys/class/leds/led1/brightness
-rw-rw-r-- 1 root hts 4096 avril 23 17:40 /sys/class/leds/led1/trigger



Groupe : hts, permissions du groupe : rw-.


Et l’on active le service pour le prochain démarrage du système :

systemctl enable ledpermissions.service

Créer un script « recording »


Ce que je veux pour ce script :



	qu’il puisse être lancé par l’utilisateur hts (OK si les permissions des LED sont modifiées) ;

	qu’il ne se plante pas si on le lance plusieurs fois de suite tout en ne laissant qu’une seule instance s’exécuter ;

	qu’il puisse être appelé avec start ou stop pour démarrer ou arrêter le clignotement et restaurer l’état initial de la LED ;

	qu’il fasse clignoter la LED verte comme ça : deux secondes allumée, une seconde éteinte, etc.




Son déroulement :



	vérifier la syntaxe, recording start ou recording stop, ignorer les paramètres supplémentaires, et en cas d’erreur de syntaxe, afficher la syntaxe correcte et sortir en erreur ;

	si l’argument est « start », vérifier que le script n’est pas déjà en cours d’exécution via un fichier PID, si ce n’est pas le cas, écrire notre PID dans ce fichier, écrire dans un fichier journal la date de début d’enregistrement et appeler la boucle de clignotement ;

	boucle de clignotement :


	sauvegarde dans deux variables des valeurs initiales de brightness et trigger de la LED verte (0),

	se préparer à mourir « proprement » si l’on reçoit Ctrl + C ou un autre signal, en appelant si ça arrive une fonction cleanup qui restaurera les valeurs initiales de brightness et trigger de la LED verte (0),

	clignoter selon notre volonté.








/usr/local/bin/recording :


#!/bin/bash

# define PID file
PID_FILE="/run/shm/$(basename $0)"

# define which LED we will use
LED_PATH="/sys/class/leds/led0"

# Define blinking delays in seconds
ON_DELAY=2.0
OFF_DELAY=1.0

do_start() {
# are we already running ?
if [ -f $PID_FILE ]
then
    printf "Already running or badly terminated !\n"
    exit 1
else
    echo $$ > $PID_FILE
    echo [$(date '+%F %H:%M:%S')] start >> ~/recording.log
    blink_loop
fi
}

cleanup() {
    # Restore initial values (BRIGHTNESS and TRIGGER) of the led
    echo $LED_INITIAL_BRIGHTNESS > $LED_PATH/brightness
    echo $LED_INITIAL_TRIGGER > $LED_PATH/trigger
    # Remove pid file if present
    [ -f $PID_FILE ] && rm $PID_FILE
    exit 0
}

blink_loop() {
# Get initial values (BRIGHTNESS and TRIGGER) of the red led to restore it at
# exit time
LED_INITIAL_BRIGHTNESS=$(cat $LED_PATH/brightness)
LED_INITIAL_TRIGGER=$(sed 's/.*\[\(.*\)\].*//' < $LED_PATH/trigger)

trap 'cleanup' EXIT HUP INT QUIT TERM

while true
do
    echo default-on > $LED_PATH/trigger
    sleep $ON_DELAY
    echo none > $LED_PATH/trigger
    sleep $OFF_DELAY
done
}

do_stop() {
    echo [$(date '+%F %H:%M:%S')] stop >> ~/recording.log
    # kill the process otherwise, previous led states are unknown unless writed
    # to a file before blink loop
    pkill -TERM -x $(basename $0)
}

print_syntax() {
    printf "Syntax : $(basename $0) <start|stop>\n"
}

if [ "$#" -ge "1" ]
then
    case ${1,,} in
        start)
            do_start
        ;;
        stop)
            do_stop
        ;;
        *)
            print_syntax
            exit 1
        ;;
    esac
else
    print_syntax
    exit 1
fi


Le rendre exécutable :

chmod +x /usr/local/bin/recording

Tester


recording start doit faire clignoter la LED comme convenu, et Ctrl +  C doit arrêter le script et restaurer l’état initial de la LED utilisée.


Depuis un autre terminal avec le même utilisateur, recording stop doit arrêter le script et restaurer l’état initial de la LED utilisée.

Appeler le script en début et fin d’enregistrement


Via l’interface Web de Tvheadend, dans la configuration des profils d’enregistrement :


Configuration > Recording > Digital Video Recorder Profiles

Choisir le profile DVR behavior

Pre-processor command: /usr/local/bin/recording start

Post-processor command: /usr/local/bin/recording stop

Save


Seulement entrer ça dans les deux champs concernés ne fonctionne pas ; il ne se passe rien.

Après tatonnements, j’en suis arrivé à la conclusion que les commandes entrées dans ces champs n’acceptent pas d’arguments ?!


On contourne donc en créant deux scripts distincts recording-start et recording-stop qui vont appeler le script recording avec les bons arguments :



	
/usr/local/bin/recording-start :


#!/bin/bash
/usr/local/bin/recording start



	
/usr/local/bin/recording-stop :


#!/bin/bash
/usr/local/bin/recording stop






Les rendre exécutables :

chmod +x /usr/local/bin/recording-*


Configuration > Recording > Digital Video Recorder Profiles

Choisir le profile DVR behavior

Pre-processor command: /usr/local/bin/recording-start

Post-processor command: /usr/local/bin/recording-stop

Save

Tests


Enregistrez avec Tvheadend, Ça fonctionne correctement ? Well done! Sinon, il doit manquer une étape quelque part.

Dépannage


Au détour d’un site parlant de Pi, j’ai trouvé ces paramètres à placer dans /boot/config.txt pour controler les LED :


dtparam=act_led_trigger=none
dtparam=act_led_activelow=off
dtparam=pwr_led_trigger=none
dtparam=pwr_led_activelow=off



Seulement, au deuxième redémarrage, la LED rouge est restée allumée ! La méthode via script de démarrage et systemd ci‑dessus fonctionne mieux.

Références



	Raspberry Pi : https://www.raspberrypi.org ;

	Raspberry Pi LED : https://mlagerberg.gitbooks.io/raspberry-pi/content/5.2-leds.html ;

	DVB-T : https://www.linuxtv.org/wiki/index.php/DVB-T ;

	Tvheadend : https://tvheadend.org ;

	modifier l’état des LED au démarrage du système via systemd : https://git.sekoya.org/mb/rpi-leds.




Voir cet article « chez moi » : https://www.sekoya.org/#!blog/raspberrypi-tvheadend-recording-led.md.


Aller plus loin


	
Journal à l’origine de la dépêche
(60 clics)









EPUB/imageslogoslinuxfr2_mountain.png





EPUB/nav.xhtml

    
      Sommaire


      
        
          		Aller au contenu


        


      
    
  

EPUB/imagessections5.png





