

Verilator 4.002

Posté par martoni (site web personnel, Mastodon) le 24 septembre 2018 à 01:33.
Édité par Davy Defaud, BAud, ZeroHeure, bubar🦥, palm123 et Benoît Sibaud.
Modéré par ZeroHeure.
Licence CC By‑SA.

Étiquettes :

	verilog

	systemc

	c++

	verilator

[image: Matériel]

La version 4.002 de Verilator a été annoncée à la conférence ORConf2018 en Pologne.

Verilator est sans conteste le simulateur HDL open source le plus rapide du « marché ». Il permet de simuler des porte‐grammes écrits en Verilog synthétisable.

[image: Le nouveau logo de Verilator]

Synthétisable ? Ce point est important. En effet, le langage Verilog (tout comme son homologue VHDL) permet de décrire des modèles de circuits numériques destinés à être utilisés dans des FPGA mais aussi des ASIC. En plus de la partie « modélisation », Verilog (comme VHDL) inclut la partie tests. On peut donc écrire tout notre testbench en Verilog, puisque nous avons des fonctions d’affichage, d’accès aux fichiers, etc. Cependant, seule une sous‐partie du langage Verilog est capable de décrire le circuit final, c’est ce qu’on appelle la partie « synthétisable » car elle peut être synthétisée en un schéma électronique numérique.

Si verilator n’est capable de prendre en entrée que du Verilog synthétisable, c’est parce qu’il convertit ce code en un objet en C++ et/ou SystemC (le SystemC n’étant qu’une bibliothèque C++). La partie code de test sera donc écrite en C++/SystemC et le programme final compilé avec gcc.

Le binaire ainsi compilé peut ensuite être exécuté comme n’importe quel exécutable et lancera la simulation de notre modèle numérique (le porte‐gramme).

Le résultat est un temps de simulation incroyablement plus rapide qu’avec les simulateurs classiques. Le site officiel donne des vitesses 90 fois supérieures au célèbre simulateur Verilog open source Icarus. Personnellement, sur mon porte‐gramme d’anti‐rebond j’obtiens une vitesse 20 fois supérieure, mais c’est en enregistrant des traces très lourdes (700 Mio) permettant de visualiser les signaux une fois la simulation terminée.

Il est possible de faire tourner des modèles de microprocesseurs écrit en Verilog en « temps réel » (à quelques kilohertz).

Concrètement, si l’on prend l’exemple d’un porte‐gramme simple permettant de filtrer les rebonds d’un bouton (pour le code complet c’est par ici). On aura les ports d’entrée‐sortie suivants :

module button_deb(
 // sync design
 input clk,
 input rst,
 // in-out
 input button_in,
 output button_valid);

Une fois « compilé » avec verilator :

verilator -Wall -cc src/button_deb.v --trace --exe test/test_button_deb.cpp

On obtient un objet que l’on peut instancier dans son programme principal :

 Vbutton_deb* top = new Vbutton_deb;

L’accès aux signaux d’entrée‐sortie se fait ensuite simplement comme un accès aux variables de l’objet :

top->rst = 1;
top->button_in = 0;
top->clk = 0;

On évalue les valeurs de sortie par l’appel à la fonction eval() :

top->eval();

C’est cet appel à la fonction eval() qui fera avancer la simulation d’un « pas ». À nous de connaître le temps que nous souhaitons avoir entre deux pas.

Hormis la collection de corrections de bogues, la fonctionnalité majeure de cette nouvelle version est la prise en charge de multiple fils d’exécution (multi‐threads), qui divise encore le temps de simulation de beaucoup, en fonction du nombre de cœurs présents sur sa machine.

Cette nouvelle version de Verilator prouve surtout que ce vénérable projet (créé en 1994 d’après la page Wikipédia) est encore largement actif, il est désormais pris au sérieux par tous les concepteurs de matériel. Et si l’on en croit son auteur, la plupart des équipes qui conçoivent des microprocesseurs l’utilisent intensément.

Bref, un très bel exemple d’outil de libération des FPGA. ;)

Aller plus loin

	
Page officielle de Verilator
(641 clics)

	
Comparaison de temps de simulation Verilator vs Icarus
(305 clics)

	
Notes de version de la 4.002
(123 clics)

	
La présentation à ORConf2018
(143 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/552cfb0cbba8e5ca250d5f8d4fa9e3698fdfd324e7807572fd46de39.png
VERILATOR

EPUB/imagessections19.png

