

Version 1.0 de Julia

Posté par claudex le 04 mars 2012 à 12:13.
Édité par reno, Nÿco, Brndan, Xavier Teyssier, olivierweb et Bruno Michel.
Modéré par NeoX.
Licence CC By‑SA.

Étiquettes :

	distribué

	sciences

	julia

	dataviz

	calcul_scientifique

[image: Technologie]

Julia, un langage de programmation peu connu, a atteint la version 1.0 (disponible uniquement sur Linux et Mac OS X actuellement). Le langage a été créé par des scientifiques et se veut donc optimisé pour leurs besoins : le calcul scientifique, l'apprentissage automatique (machine learning en anglais), la fouille de données (data mining), le calcul algébrique linéaire à grande échelle et le calcul distribué et parallèle.

Ils veulent un langage :

	Très simple à apprendre, mais qui puisse aussi convenir aux « hackeurs sérieux » : Julia a une syntaxe facile à apprendre pour les utilisateurs de Matlab, tout en étant homoiconique avec des vrais macros comme le Lisp.

	Aussi utilisable pour la programmation « normale » que Python, aussi simple pour les statistiques que R, aussi naturel pour le traitement de texte que Perl (Julia supporte les PCRE), aussi puissant pour l'algèbre linéaire que Matlab et aussi bon pour lier des programmes ensemble que le shell.

Avec une implémentation :

	Open source avec une licence peu contraignante : Julia est sous licence MIT.

	Aussi performante que le C tout en ayant la dynamicité de Ruby : quelques benchmarks sont sur la page d'accueil de Julia qui est dynamiquement typé avec annotation optionnelle de type (et dispatch multiple).

	Fournissant un mode interactif et compilé.

Bref, ils sont ambitieux ! Leur manuel de référence est assez bien fait : à vous de juger…

NdA : Merci à Nÿco, olivierweb, Brndan et particulièrement à reno pour leur aide lors de la rédaction de cette dépêche.

Exemples

Hello world

Un hello world en ligne de commande utilisant l'interpolation de chaîne.

julia> whom = "world"
"world"
julia> "Hello, $whom.\n"
"Hello, world.\n"

Mandelbrot

Un exemple d'une fonction pour avoir un aperçu de la syntaxe.

Noter qu'ici z est normalement un complexe, qui tout comme les nombre rationnels, sont gérés "nativement" dans Julia.

function mandel(z)
 c = z
 maxiter = 80
 for n = 1:maxiter
 if abs(z) > 2
 return n-1
 end
 z = z^2 + c
 end
 return maxiter
end

Calcul parallèle

Le calcul parallèle est très simple, il se fait à l'aide de la macro @spawn. Le code suivant va simuler le lancement de deux pièces en même temps et compter le nombre de « face » :

function count_heads(n)
 c = 0
 for i=1:n
 c += randbit()
 end
 c
end

a = @spawn count_heads(100000000)
b = @spawn count_heads(100000000)
fetch(a)+fetch(b)

Personnellement (reno), je trouve que c'est un langage qui a de bonnes idées, avec tout de même quelques éléments qui peuvent être gênants/surprenants :

	L'indice des tableaux commence à 1 plutôt qu'à 0 : l'héritage de Matlab probablement, mais quand on est habitué au C…

	Pas de détection des débordements: "x::Int8 = 1000" ne retourne pas d'erreur (x vaut -24), curieux pour un langage prévu pour les scientifiques!

	Les String bien qu'UTF-8, ont un opérateur de tableau [] qui retourne les octets sous-jacents : en UTF-8 l'accès par index étant ambigu (entre les octets et les codepoints), cela devrait être fourni par des fonctions explicites : une String UTF-8 n'est pas un tableau (oui, je sais : bikeshedding) !

Aller plus loin

	
Julia
(1062 clics)

	
Pourquoi avoir créé Julia
(360 clics)

	
Le manuel de référence
(290 clics)

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/imagessections50.png

