

VTK : la visualisation scientifique et au delà !

Posté par mzf (site web personnel) le 04 février 2021 à 13:21.
Édité par Ysabeau 🧶, Benoît Sibaud, Pierre Jarillon et palm123.
Modéré par Ysabeau 🧶.
Licence CC By‑SA.

Étiquettes :

	vtk

	visualisation

	kitware

	paraview

	sciences

	dataviz

	imagerie_médicale

[image: Science]

VTK est une bibliothèque libre incontournable de la visualisation scientifique, pourtant peu citée sur LinuxFr. Rattrapons le retard !

[image: Logo de VTK]

VTK est en quelque sorte le couteau suisse de la visualisation scientifique. La suite de cet article vous donnera un aperçu de ses domaines d’utilisation en s’appuyant sur de nombreux exemples abondamment illustrés.

Sommaire

	Visualisation Scientifique

	Historique

	Kitware

	
Principes de fonctionnement de VTK
	Pipeline

	
Quelques exemples
	Jouons avec une quadrique

	Rendu volumique

	Autres types de rendu

	Conclusion

Visualisation Scientifique

Le domaine d’application premier de VTK est la visualisation scientifique. C’est une discipline très large qui couvre les représentations possibles de données issues du domaine scientifique dans le but de les rendre interprétables par des humains :

	résultats de simulations : météo, astrophysique, fluides…

[image: source : wikimedia]

	mesures venant de capteurs : imagerie médicale, inspection des sols…

[image: Tomographie par émission monophotonique d’une souris, source : wikimedia]

	données créées ex-nihilo : équation mathématique, données historiques ou géographiques…

[image: source : wikimedia]

Une particularité de cette visualisation est de rendre les données compréhensibles pour l’utilisateur dans un but d’analyse. Être capable de représenter ces données d’une façon simple est en général assez complexe ! Elles doivent être transformées, simplifiées, projetées sur des primitives géométriques (points, lignes, surfaces, etc.), colorées, combinées, superposées, etc.

De plus ces données sont souvent brutes et peuvent être de taille considérable, de l’ordre du gigaoctet ou du téraoctet, et nécessitent en général plusieurs traitements lourds pour en extraire des informations pertinentes pour l’observateur. Pour des questions de performance ces transformations doivent pouvoir s’exécuter en parallèle en utilisant un maximum de ressources disponibles : CPU, GPU, grappe de serveurs, etc.

En 1993, seuls quelques logiciels propriétaires étaient capables de répondre à toutes ces contraintes. Comme nous allons le voir par la suite, la publication de VTK sous une licence libre, donc gratuite, lui a permis de devenir rapidement une solution de référence pour des utilisateurs assez divers.

Historique

VTK est l’acronyme de Visualization Toolkit, soit littéralement boîte à outils de visualisation en français. Cette bibliothèque est à l’origine un logiciel accompagnant le livre The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics écrit par trois chercheurs, Will Schroeder, Ken Martin et Bill Lorensen, travaillant à l’époque, en 1993, chez General Electric R&D. Leur propos était de collaborer avec d’autres chercheurs et de développer des outils communs pour créer des applications avancées de visualisation de données. Leur employeur les autorisa à publier ce livre écrit sur leur temps libre ainsi que le code source sous une licence libre.

[image: VTK text book]

Au début utilisé principalement en interne par General Electric pour le domaine médical, la bibliothèque rencontra rapidement du succès dans l’univers de la recherche scientifique. Ceci amena deux des auteurs du livre à créer la société Kitware en 1998 pour répondre aux demandes des utilisateurs et contributeurs que ce soit des laboratoires de recherche ou des entreprises.

Au cours de son développement, les applications utilisant VTK se sont diversifiées comme le traitement d’image, la vision par ordinateur ou l’analyse de données.

Le livre en est aujourd’hui à sa quatrième édition, et VTK est en version 9.0 avec une version majeure tous les 2 à 3 ans. Cette dernière version amène de nombreuses nouveautés, dont les plus visibles sont :

	rendu physique réaliste, comparaison entre un matériau non métallique à gauche et un autre métallique à droite

[image:]

	l’occlusion ambiante, qui améliore la perception de profondeur

[image:]

	éléments de maillage de type Bézier

[image:]

Ces nouvelles fonctionnalités permettent des rendus réalistes modernes comme vous pouvez le constater parcourant la chaîne vidéo de Kitware :

[image: Theatre Simulation Video]

[image: Singapore Test Case Video]

[image: Satellite Intercept Video]

Kitware

Petite parenthèse sur Kitware, cette entreprise assez particulière qui développe VTK.

[image: Logo de Kitware]

Vous connaissez peut-être déjà Kitware pour ses nombreux autres logiciels libres : CMake, CDash, ITK, Paraview… qui naviguent tous autour de l’univers de la visualisation et du développement logiciel de grande ampleur.

Kitware est une société américaine, avec une succursale à Lyon en France, d’environ 150 personnes qui développe les outils sus-cité et en propose la maintenance ainsi que des formations et des développements spécifiques. Fait rare, son CEO, Lisa Avila, est une femme et l’équipe dirigeante est aussi partiellement féminine. Autre point positif, l’entreprise est détenue à 100% par ses employés depuis peu. D’ailleurs dans un article récent on apprend que l’entreprise a du mal à recruter. Les profils recherchés, techniquement pointus, amènent Kitware à rentrer en concurrence avec les géants américains de l’informatique comme Google ou Amazon.

Comme beaucoup d’entreprises qui développent des logiciels libres, le modèle économique de Kitware semble être un mélange entre du développement spécifique de niche autour de leurs outils, et de la formation couplé à de la maintenance pour utilisateurs avancés. De plus, en parcourant leur blog on peut constater que Kitware participe à beaucoup de projets de recherche américains et européens. Comme l’explique Lisa Avila dans cet article, chaque client a des besoins très spécifiques ce qui demande beaucoup d’accompagnement commercial avec un suivi financier efficace pour garantir la pérennité des projets de recherche.

Principes de fonctionnement de VTK

Passons à la technique !

Le cœur de VTK est développé en C++, mais il existe de nombreux portages et il est ainsi possible de s’en servir en Tcl, Python, Jupyter (via Paraview Jupyter Kernel), Visual Basic, C# (via ActiViz), Java, Javascript (via vtk.js), Unity… et j’en oublie sûrement !

VTK utilise la programmation orientée objet, c’est-à-dire que chaque concept ou action est représentée par un objet. Un objet regroupe les données spécifiques à sa tâche et des actions qui peuvent s’appliquer sur ces données, tout en interdisant le reste du programme d’y accéder. C’est le principe de l’encapsulation, très populaire dans les langages C++, Java, C#…

À noter que VTK défini aussi son propre format de stockage de donnée dont les fichiers ont en général l’extension .vtk ou l’une de ses variantes (vtu, vti, vtp…). Avec le temps, le format a évolué et on trouve aujourd’hui à la fois l’ancienne version texte brut, aujourd’hui obsolète, ou la version plus moderne en XML. Cette dernière peut contenir des données binaires en plus des balises XML, ce qui permet d’accélérer le chargement, ainsi que la possibilité de lecture et écriture en parallèle de plusieurs sections d’un même fichier.

Pipeline

VTK fonctionne en pipeline configurable. Cela signifie que les données vont subir plusieurs transformations ou actions jusqu’à leurs multiples représentations finales. En simplifiant, on peut dire VTK défini deux familles d’objets : les objets de données et les objets de traitement sur celles-ci, appelés process en anglais.

Il existe ainsi trois type de processus :

	les sources qui ne prennent rien en entrée mais qui produisent une sortie

[image: illustation source]

	les filtres qui acceptent des données en entrée et en produisent en sortie

[image: illustation file]

	les puits (sink en anglais) qui ont besoin de données en entrée mais ne produisent rien en sortie. Même s’ils n’ont pas de flux de sortie au sens du pipeline, cela n’empêche pas d’effectuer des actions d’entrée/sortie système comme de l’affichage ou l’écriture dans un fichier.

[image: illustation puit]

Notez que sur les illustrations ci-dessus, une seule flèche est représentée par simplification alors qu’un processus peut accepter et générer plusieurs données.

Donc en combinant différents processus on obtient une succession d’étapes qui permettent à partir d’une source de donnée brute d’arriver à de multiples représentations graphiques.

L’utilisation d’un pipeline permet aussi une mise jour automatique du rendu quand un paramètre change. Si la source change, tout doit être recalculé, mais si seul un paramètre d’un filtre change, seules les étapes en aval seront mises à jour.

Il existe plusieurs centaines de filtres disponibles dans VTK, couvrant de nombreux besoins. Nous allons en voir quelques-uns dans les exemples suivants.

Quelques exemples

Jouons avec une quadrique

Exemple concret adapté du VTK TextBook, imaginons qu’on souhaite explorer la quadrique suivante :

Notre fonction associe une valeur à tout point de l’espace à 3 dimensions. Pour la représenter nous allons générer et afficher des surfaces de niveau et des lignes de niveau, ce qui revient mathématiquement à dessiner l’ensemble des points [image: (x,y,z)] pour lesquels [image: F(x,y,z) = K] avec [image: K] une constante.

Construisons notre pipeline qui doit contenir une source, des filtres et pour finir un système de rendu.

Première étape : la source, qui est de type vtkQuadric, un objet bien pratique qui représente une quadrique.

On échantillonne cette source avec un vtkSampleFunction pour obtenir un ensemble discret de points, que l’on va ensuite passer dans un filtre de contour vtkContourFilter qui extrait des surfaces dont les points ont la même valeur. À cette étape les surfaces ne sont que des objets mathématiques sans réalité physique. Il faut donc utiliser un vtkPolyDataMapper pour les associer à des primitives graphiques dans le but de leur affichage. Dans notre cas ces primitives sont des triangles colorés en fonction de la valeur des points des différentes surfaces.

Dernière étape, il faut placer nos primitives dans la scène 3D via un acteur vtkActor lié à la fenêtre graphique, elle-même combinaison de plusieurs objets : vtkRenderer, vtkRenderWindow, vtkRenderWindowInteractor… Le concept d’acteur permet d’ajouter des transformations spatiales (translation/rotation/homothétie/etc.) à des primitives indépendamment de l’espace de rendu.

Si on représente graphiquement notre pipeline, elle ressemble à ça :

[image: iso surface pipeline]

Et le résultat :

[image: Affichage des surfaces de niveau]

On observe ainsi les différentes surfaces de niveau colorées.

Complexifions maintenant en superposant d’autres visualisations de cette même source.

Pour extraire et afficher des lignes de niveau sur plusieurs plans, nous allons utiliser un extracteur de volume vtkExtractVOI qui permet de travailler sur un sous-ensemble d’échantillons. Dans notre cas ces échantillons seront situés sur un plan. La suite est similaire à la visualisation précédente en utilisant un filtre de contour qui va cette fois-ci extraire des segments au lieu des surfaces. Les primitives graphiques vont ainsi être des lignes et on utilisera aussi un acteur vtkActor pour placer le dessin dans la même fenêtre de rendu.

Dans la représentation graphique du pipeline, on trouve ainsi deux branches qui partent de la même source et finissent dans la même scène de rendu mais en passant par des filtres différents : l’une pour les surfaces de niveau, l’autre pour les lignes de contours.

[image: Iso surfaces et iso lignes pipeline]

résultat :

[image: Iso surfaces et iso lignes résultat]

Mais on n’y voit rien ! C’est à cause des représentations superposées. On peut alors soit jouer sur la transparence pour rendre les lignes visibles, soit les déplacer dans le rendu final grâce à l’objet « acteur » associé :

[image: Iso surfaces et iso lignes résultat]

Et en rajoutant une boîte englobante pour mieux se situer dans l’espace :

[image: Iso surfaces et iso lignes résultat]

Rendu volumique

Exemple un peu plus avancé, nous allons travailler sur une source volumique qui contient des informations pour chaque voxel d’un espace 3D. C’est le cas typique de données venant d'imagerie par résonance magnétique (IRM). Pour se représenter les choses, on peut utiliser l’analogie d’un grand Rubik's cube avec une valeur associée à chaque case.

[image: Analogie du Rubik's cube]

Voici la version Rubik's cube de nos données :

[image: Version brute]

Difficile de comprendre ce qu’il y a à l’intérieur !

Si on reprend les méthodes décrites dans l’exemple précédent, on peut imaginer plusieurs façons de visualiser ces données :

	projeter la valeur de chaque voxel sur un point de l’espace 3D, comme l’image rubik's cube ci-dessus

	afficher des lignes de contours ou des surfaces de contours

[image: Iso-surface pour V=1000]

[image: Iso-surface pour V=2000]

Mais comme on le voit dans les captures d’écran ci-dessus, les surfaces comportent des trous car les différentes parties (peau, crâne, etc.) sont représentés par une plage de valeur et non plus par une seule valeur. On peut évidemment superposer plusieurs surfaces, mais il est toujours difficile de percevoir l’intérieur du modèle, ce qui est pourtant le but recherché en imagerie médicale (recherche de tumeur par exemple) :

[image: Iso-surfaces superposées]

La solution ? Utiliser le lancer de rayon (raycasting) !

L’idée est de faire partir un rayon pour chaque pixel de l’image de rendu. Ce rayon va traverser notre volume voxélisé et recueillir des informations à chaque cube traversé. Il suffira ensuite de se servir de ces informations pour définir la couleur du pixel de l’image.

Il existe de nombreuses façons de faire ce dernier calcul en fonction de ce que l’utilisateur souhaite afficher. On peut citer :

	utiliser la moyenne des valeurs des cubes traversés ;

	utiliser la valeur maximale des cubes traversés, abrégé MIP pour maximum intensity projection ;

	utiliser la valeur minimale des cubes traversés, abrégé MinIP pour minimum intensity projection ;

	somme des valeurs traversées ;

	intégrale des valeurs traversées ;

	etc.

Dans cet exemple nous allons utiliser la valeur maximale grâce au filtre vtkFixedPointVolumeRayCastMapper. Voici notre pipeline :

[image: Ray casting pipeline]

Elle commence par reader qui ne prend rien en entrée mais agit sur le système en lisant le fichier, puis on utilise un VolumeRayCastMapper qui va se charger de faire le lancer de rayon et le calcul MIP. On le passe ensuite à l’objet vtkVolume qui est le pendant volumique du vtkActor utilisé pour les primitives géométriques.

Le résultat :

[image: Résultat MIP]

Ça y est on commence à voir l’intérieur et l’extérieur. La couleur d’un pixel est donc la valeur maximale du matériau traversé, en gros le matériau le plus dense (les os et les dents dans notre cas). Mais il est encore difficile de situer chacun des éléments dans l’espace, ce qui est l’inconvénient majeur de la méthode MIP. On peut contourner ce problème en créant une animation :

[image: Animation MIP]

Il est ensuite possible de colorer les différents pixels grâce à une fonction qui va associer chaque valeur à une couleur, appelée fonction de transfert. Si on connaît la plage de valeur de chaque élément à faire ressortir, on peut lui associer des couleurs similaires. Ici les dents en rouge, les os en jaune et la peau en bleu :

[image: MIP coloré]

Autres types de rendu

Ces exemples simples ont permis de découvrir toute la souplesse et la puissance de l’architecture en pipeline de VTK. Il existe de nombreux autres filtres qui répondent aux besoins de la visualisation de données scientifiques. Citons les grandes catégories :

	la coloration, c’est-à-dire associer une plage de valeur à un ensemble de couleurs :

[image: exemple de différentes échelles de couleur]

	création de contours (lignes, surface…)

[image: exemple contours]

	affichage de symboles (glyphs)

[image: exemple glyphs]

	affichage de lignes de courant (streamlines)

[image: exemple lignes de courant]

	découpage de volume

[image: exemple découpage de volume]

	déformation de maillages

[image: exemple déformation de maillages]

	travail sur des images

[image: exemple de modification d’image]

	rendu volumique

[image: Rendu volumique]

	rendu géographique

	affichage de graphes

	analyse de données (Big Data)

	…

Et, s’il vous manque des outils, le code ouvert et l’architecture modulaire de VTK permettent de les développer, soit vous-même, soit via un prestataire tel que Kitware. Vous pouvez aussi en discuter sur le forum de VTK ou encore participer directement au développement (rapport de bug, discussion, proposition de nouvelle fonctionnalité…) sur l'instance gitlab dédiée.

Conclusion

VTK est donc une boîte à outils très puissante dédiée à la visualisation de données. Cette présentation n’a fait qu’effleurer les fonctionnalités de base pour illustrer l’utilisation du pipeline, et je vous encourage à aller consulter les exemples pour un panorama plus complet.

Pour finir, si vous ne développez pas des applications de visualisation scientifique, il se peut qu’associer les filtres à la main via un langage de programmation vous paraisse assez laborieux. C’est pour cela que Kitware a développé une application qui s’appuie sur VTK et permet de manipuler très facilement le pipeline : Paraview.

Mais ce sera pour une prochaine dépêche !

Aller plus loin

	
Site officiel
(245 clics)

	
Exemples
(175 clics)

	
Code source
(77 clics)

EPUB/63fdc3f75d27726936c9db0ab114de8bba59c97d9e1451ee9606e6ac.png

EPUB/f39f793667cb5b06b5888c0205557be0e76f9a0f5a0b37055551bf79.png

EPUB/imageslogoslinuxfr2_mountain.png

EPUB/a754c68302472c86adba6259c39f63f8805914d55fb1729ce52301e1.jpg

EPUB/bbed4db7a8dba48a7a1f02a5817cc5b865a4f3e13e8a15be373dc4cb.png

EPUB/77b63994bc24072714ebabc5487b9738e8e9182cb6c363f3af96e2ed.png
source

EPUB/012d202fbeec808fa792f1e582a974d2f36bad9d57599b680f92230e.png

EPUB/56fcfd462721d5c5701802217e73d2ab1386bae2311891a19bde98a8.png
VIK

EPUB/afd0eef1d85a9bc8abd1db9e541fe08aa0cf9c9f4857508f81e1bcb0.png

EPUB/067392b51e6a97414aec17aa7f633e248f805b5a3c6cb0ef11cc9c5f.png

EPUB/5a41128a11757e2bbe2fc6c9884f2297b5e363ea87dc848e2ccb303f.png

EPUB/9828d2367334c9c714948181e70a351d43c1c7afddc927d743a67872.jpg

EPUB/69374084fedf73e2b456b06378c0454919254e47f88cc9d56c532634.png

EPUB/9455dc6f9489df6e49931a1b98f9f896f5badd2a77c93b39e997cae2.png
vtkQuadric

i

vtksampleFunction

~

VEKExtractvol
vtkContourfilter vtkContourfilter
A 4 A 4
VtkPolyDataMapper VtkPolyDataMapper
A 4 A 4
VtkActor VtkActor

VtkRenderer

EPUB/00a67b9e7a5a85f35acb0a52c7c8a954e18620d0b916a975c1c8dee2.jpg
Kitware Community Contribution
Theatre Simulation

Thomas Tian from Tian Green Building Simulation

EPUB/c27571679a135deff52a2f2f3002080d0befb6e4b6e8f9f2fa957124.png
puit

EPUB/44edbe4fff717414127b7b44b42827b4661035b1bd09df5d38605bab.jpg

EPUB/f6cfa774d4aa6ba4f898e5ac25ba2c7bf79de9264d6872076e6b681e.jpg

EPUB/51d7c18d220ad561e90c0550ea676f8d6cc6ce8e9d86277c7f8289cf.jpg
Kitware Community Contribution
Singapore Test Case

Thomas Tian from Tian Green Building Simulation

EPUB/imagessections71.png

EPUB/nav.xhtml

 Sommaire

 		Aller au contenu

EPUB/1debf0c43b7b6c6197953c2d380992846d26fdcdd7037786632c7a22.png
N

EPUB/ebc81c065d60647c49eefde912c07a93a404f7b53d3cf989d409d1b2.png

EPUB/9177d69264d5d2eec8afd6e217f9efe82d9a39d9b9a7e1ef3b8d24b2.png
VtkMetalmageReader Fichier MHA

A 4

VtkFixedPointvolumeRay CastMapper

A 4

vtkvolume

VtkRenderer

EPUB/fbeb2edf2902cd323db501491de655e758e6903019945fcdfccb8d71.png

EPUB/8e2ffd2397a9b5b3638d9ceed64aa9b1f9829551b067b2f472aaa4dc.png
filtre

EPUB/360e2edfc9d719d80a00cc84ae57b398ad0bbf23304d02521342cb63.png

EPUB/cffac44e01eb92ad390c651f97851a32d3f4a9c24372ada05ad2a640.jpg

EPUB/361efbe1744d99b8bda159351a3b36e98bc2722f290a3c2dea1e9b92.gif

EPUB/017bed0402d91f1f990c97970a4ae306b98153e5209fde720df41457.png
\))(Kitware

EPUB/faef4bdf8f6d82e2be2e1c282702484975386f157b6a064d6f0707d1.png
(0 VIKHEIERCORE () VIRBEAERTRIANGLE (o) VTR IEZER QUADRILATER L
o Tavadete) (o)

() VIK BEAER TETRAIEDION () VIK DEZER WEX
e dre R

WX () ViK pEAER WEDGE
it ety

EPUB/f8fc28b7798d1cda46d02b40e640327f56b2236a5cea830c4d12d51e.png
e e e

=y =

EPUB/87e666b41e63c27fb568deae8a9ba31ce77a5f5360c7d3b3dd6be771.png

EPUB/f9f5837eac49aabf5d8f92fcc785c62c8d2ff335567824d402f753c1.png

EPUB/d424f301b6be5c8c79a712d1d78f234d39056ca695fafbd9c2d6ee33.gif
% o
.Q:a“
" v

EPUB/12c25ea67386b344bcb05cc3567977d1e9c0861abc956b159fab1737.jpg
Kitware Community Contribution
Satellite Intercept

Courtesy of Marston Conti from Corvid Technologies

EPUB/3147ffa899ada6a5e54adae69f7ef72feea2539f33b4c2e85b8766da.png

EPUB/5bf132c4159983d135867043f3a315dabd1b153596e75820d0d17df2.png

EPUB/ec9a4bb76437c65dae2a3c44fdd78bc448651697942869906820cbfb.png
vtkQuadric

A 4

vtksampleFunction

A 4

vtkContourfilter

A 4

VtkPolyDataMapper

A 4

VtkActor

VtkRenderer

EPUB/3fa29910279f4b49344da7ec0c4906d4ad8693a79bd10601fe6576dd.png

EPUB/a942e1f2370f3c80b51e56cfd227c8309b9846ae164ff1b4cf9dff34.png

